Câu hỏi:

16/12/2025 8 Lưu

Cho hình chóp \[S.ABCD\] có đáy ABCD là hình chữ nhật, cạnh \[AB = a\], \[AD = \sqrt 3 a\]. Cạnh bên \[SA = a\sqrt 2 \] và vuông góc mặt phẳng đáy. Góc giữa đường thẳng \[SB\] và mặt phẳng \[\left( {SAC} \right)\]bằng:

A. \(75^\circ \). 
B. \(60^\circ \).  
  C. \[45^\circ \]. 
D. \(30^\circ \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh AB = a, AD = căn bậc hai 3 a. Cạnh bên SA = a căn bậc hai 2 và vuông góc mặt phẳng đáy. Góc giữa đường thẳng SB và mặt phẳng (SAC) bằng: (ảnh 1)

Kẻ \[BH \bot AC\] và \[H \in AC\]\[ \Rightarrow \]\[BH \bot \left( {SAC} \right)\].

\[SH\] là hình chiếu của \[BH\] trên mặt phẳng \[\left( {SAC} \right)\].

Góc giữa \[SB\] và mặt phẳng \[\left( {SAC} \right)\] là \[\widehat {BSH}\].

Ta có \[BH = \frac{{AB.BC}}{{\sqrt {A{B^2} + B{C^2}} }} = \frac{{a\sqrt 3 }}{2}\], \[SB = \sqrt {S{A^2} + A{B^2}}  = a\sqrt 3 \].

Trong tam giác vuông \[SBH\] ta có \[\sin \widehat {BSH} = \frac{{BH}}{{SB}} = \frac{1}{2}\]\[ \Rightarrow \widehat {BSH} = 30^\circ \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D.

Ta có: \(P(A \cup B) = P(A) + P(B) - P(AB) = 0,3 + 0,4 - 0,2 = 0,5\)

Lời giải

Trả lời: \(t = 2\)

Lời giải

Gia tốc của chất điểm tại thời điểm \(t\) là \(a\left( t \right) = v'\left( t \right) = 2 + 2t\).

Theo giả thiết ta có \(2 + 2t = 6 \Leftrightarrow t = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\left( {SCD} \right) \bot \left( {SAD} \right) \cdot \]                                     

B. \[\left( {SBC} \right) \bot \left( {SIA} \right) \cdot \]

C. \[\left( {SDC} \right) \bot \left( {SAI} \right) \cdot \]  

D. \[\left( {SBD} \right) \bot \left( {SAC} \right) \cdot \]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP