Câu hỏi:

16/12/2025 151 Lưu

Cho hình chóp \[S.ABCD\] có đáy ABCD là hình chữ nhật, cạnh \[AB = a\], \[AD = \sqrt 3 a\]. Cạnh bên \[SA = a\sqrt 2 \] và vuông góc mặt phẳng đáy. Góc giữa đường thẳng \[SB\] và mặt phẳng \[\left( {SAC} \right)\]bằng:

A. \(75^\circ \). 
B. \(60^\circ \).  
  C. \[45^\circ \]. 
D. \(30^\circ \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh AB = a, AD = căn bậc hai 3 a. Cạnh bên SA = a căn bậc hai 2 và vuông góc mặt phẳng đáy. Góc giữa đường thẳng SB và mặt phẳng (SAC) bằng: (ảnh 1)

Kẻ \[BH \bot AC\] và \[H \in AC\]\[ \Rightarrow \]\[BH \bot \left( {SAC} \right)\].

\[SH\] là hình chiếu của \[BH\] trên mặt phẳng \[\left( {SAC} \right)\].

Góc giữa \[SB\] và mặt phẳng \[\left( {SAC} \right)\] là \[\widehat {BSH}\].

Ta có \[BH = \frac{{AB.BC}}{{\sqrt {A{B^2} + B{C^2}} }} = \frac{{a\sqrt 3 }}{2}\], \[SB = \sqrt {S{A^2} + A{B^2}}  = a\sqrt 3 \].

Trong tam giác vuông \[SBH\] ta có \[\sin \widehat {BSH} = \frac{{BH}}{{SB}} = \frac{1}{2}\]\[ \Rightarrow \widehat {BSH} = 30^\circ \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Nghiệm của phương trình là các số vô tỷ.

Đúng
Sai

b) Tổng các nghiệm của một phương trình là một số nguyên.

Đúng
Sai

c) Tích các nghiệm của phương trình là một số âm.

Đúng
Sai
d) Phương trình vô nghiệm.
Đúng
Sai

Lời giải

a) Sai

b) Sai

c) Đúng

d) Sai

\[{2^{\left| {\frac{{28}}{3}x + 4} \right|}} = {16^{{x^2} - 1}} \Leftrightarrow {2^{\left| {\frac{{28}}{3}x + 4} \right|}} = {2^{4{x^2} - 4}} \Leftrightarrow \left| {\frac{{28}}{3}x + 4} \right| = 4{x^2} - 4\,\,\left( 1 \right).\]

TH1: Nếu \[x >  - \frac{3}{7}.\] PT \[\left( 1 \right):\] \[\frac{{28}}{3}x + 4 = 4{x^2} - 4 \Leftrightarrow 4{x^2} - \frac{{28}}{3}x - 8 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\,\,\,\,\left( {TM} \right)\\x =  - \frac{2}{3}\,\,\,\left( L \right)\end{array} \right.\]

TH1: Nếu \[x \le  - \frac{3}{7}.\] PT \[\left( 1 \right):\] \[ - \frac{{28}}{3}x - 4 = 4{x^2} - 4 \Leftrightarrow 4{x^2} + \frac{{28}}{3}x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,\,\,\left( L \right)\\x =  - \frac{7}{3}\,\,\,\left( {TM} \right)\end{array} \right.\]

Phương trình có tập nghiệm \[S = \left\{ { - \frac{7}{3};\,3} \right\}\].

Lời giải

Trả lời: \(\frac{{33}}{{40}}\)

Lời giải

Xác suất để chọn được một học sinh thích môn Ngữ văn hoặc môn Toán: \(\frac{{25 + 20 - 12}}{{40}} = \frac{{33}}{{40}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP