Cho phương trình\[{2^{\left| {\frac{{28}}{3}x + 4} \right|}} = {16^{{x^2} - 1}}\]. Các mệnh đề sau đúng hay sai?
a) Nghiệm của phương trình là các số vô tỷ.
b) Tổng các nghiệm của một phương trình là một số nguyên.
c) Tích các nghiệm của phương trình là một số âm.
Quảng cáo
Trả lời:
|
a) Sai |
b) Sai |
c) Đúng |
d) Sai |
\[{2^{\left| {\frac{{28}}{3}x + 4} \right|}} = {16^{{x^2} - 1}} \Leftrightarrow {2^{\left| {\frac{{28}}{3}x + 4} \right|}} = {2^{4{x^2} - 4}} \Leftrightarrow \left| {\frac{{28}}{3}x + 4} \right| = 4{x^2} - 4\,\,\left( 1 \right).\]
TH1: Nếu \[x > - \frac{3}{7}.\] PT \[\left( 1 \right):\] \[\frac{{28}}{3}x + 4 = 4{x^2} - 4 \Leftrightarrow 4{x^2} - \frac{{28}}{3}x - 8 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\,\,\,\,\left( {TM} \right)\\x = - \frac{2}{3}\,\,\,\left( L \right)\end{array} \right.\]
TH1: Nếu \[x \le - \frac{3}{7}.\] PT \[\left( 1 \right):\] \[ - \frac{{28}}{3}x - 4 = 4{x^2} - 4 \Leftrightarrow 4{x^2} + \frac{{28}}{3}x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,\,\,\left( L \right)\\x = - \frac{7}{3}\,\,\,\left( {TM} \right)\end{array} \right.\]
Phương trình có tập nghiệm \[S = \left\{ { - \frac{7}{3};\,3} \right\}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D.
Ta có: \(P(A \cup B) = P(A) + P(B) - P(AB) = 0,3 + 0,4 - 0,2 = 0,5\)
Câu 2
A. \[\left( {SCD} \right) \bot \left( {SAD} \right) \cdot \]
B. \[\left( {SBC} \right) \bot \left( {SIA} \right) \cdot \]
C. \[\left( {SDC} \right) \bot \left( {SAI} \right) \cdot \]
Lời giải
Chọn A
Ta có:
\[CD \bot AD\](vì \(ABCD\) là hình chữ nhật)
\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot CD\)
\(SA \cap AD = A\)
\(SA,AD \subset \left( {SAD} \right)\)
\( \Rightarrow CD \bot \left( {SAD} \right)\)
Mà \[CD \subset \left( {SCD} \right)\] nên \[\left( {SCD} \right) \bot \left( {SAD} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(2\sqrt 5 a\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\frac{1}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \({\log _9}1125 = 1 + \frac{3}{{2a}}\).
C. \({\log _9}1125 = 2 + \frac{2}{{3a}}\).
D. \({\log _9}1125 = 1 + \frac{3}{a}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.