Câu hỏi:

16/12/2025 80 Lưu

Cho hình chóp \(S.ABCD\) có đáy là hình thoi cạnh \(a,\widehat {BAD} = 120,SA \bot (ABCD)\) và \(SA = \sqrt 3 a\). Tính góc giữa đường thẳng \(SC\) và mặt phẳng \((SAD)\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \( \approx {64,3^0}\)

Lời giải

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, góc BAD = 120,SA vuông góc (ABCD) và SA = căn bậc hai 3 a. Tính góc giữa đường thẳng SC và mặt phẳng (SAD)? (ảnh 1)

Xét \(\Delta ADC\) cân tại \(D\), có \(\widehat {{\mkern 1mu} D{\mkern 1mu} } = {60^^\circ }\) nên \(\Delta ADC\) đều.

Kẻ \(CI \bot AD\)

Ta có: \(CI \bot SA \Rightarrow CI \bot (SAD)\) tại \(I\) và \(SC\) cắt mp \((SAD)\) tại \(S\) \( \Rightarrow SI\) là hình chiếu của \(SC\) trên mp\((SAD)\)

\( \Rightarrow (SC,(SAD)) = (SC,SI) = \widehat {CSI}\)

Ta có: \(SI = \sqrt {S{A^2} + A{I^2}}  = \sqrt {{{(a\sqrt 3 )}^2} + {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{\sqrt {13} }}{2}a\)

Xét \(\Delta SCI\) vuông tại \(I:\tan \widehat {CSI} = \frac{{SI}}{{IC}} = \frac{{\frac{{a\sqrt {13} }}{2}}}{{\frac{{\sqrt 3 a}}{2}}} = \frac{{\sqrt {39} }}{3} \Rightarrow \widehat {CSI} \approx {64,3^0}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D.

Ta có: \(P(A \cup B) = P(A) + P(B) - P(AB) = 0,3 + 0,4 - 0,2 = 0,5\)

Lời giải

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AB = a, AA' = 2a. Tính khoảng cách từ điểm A đến mặt phẳng (A'BC) (ảnh 1)

Dựng \[AH \bot A'B\].

Ta có \[\left. \begin{array}{l}BC \bot AB\\BC \bot AA'\end{array} \right\} \Rightarrow BC \bot \left( {A'AB} \right)\]\[ \Rightarrow BC \bot AH\]

Vậy \[AH \bot \left( {A'BC} \right)\]\[ \Rightarrow d\left( {A,\left( {A'BC} \right)} \right) = AH\].

Xét tam giác vuông \[A'AB\] có \[\frac{1}{{A{H^2}}} = \frac{1}{{A{{A'}^2}}} + \frac{1}{{A{B^2}}}\]\[ \Leftrightarrow AH = \frac{{2\sqrt 5 a}}{5}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP