Phần 1. Câu trắc nghiệm nhiều phương án chọn.
Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án đúng nhất.
Cho các số dương \(a\),\(b\), \(c\), và \(a \ne 1\). Khẳng định nào sau đây đúng?
Phần 1. Câu trắc nghiệm nhiều phương án chọn.
Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án đúng nhất.
A. \[{\log _a}b + {\log _a}c = {\log _a}\left( {b + c} \right)\].
B. \[{\log _a}b + {\log _a}c = {\log _a}\left| {b - c} \right|\].
C. \[{\log _a}b + {\log _a}c = {\log _a}\left( {bc} \right)\].
D. \[{\log _a}b + {\log _a}c = {\log _a}\left( {b - c} \right)\].
Quảng cáo
Trả lời:
Theo tính chất logarit ta có: \[{\log _a}b + {\log _a}c = {\log _a}\left( {bc} \right)\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \( \approx {54^^\circ }\)
Lời giải
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BO \bot SA}\\{BO \bot AC}\end{array} \Rightarrow BO \bot (SAC)} \right.\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBA) \cap (SAC) = SA}\\{{\mathop{\rm Trong}\nolimits} \,(SAC),OI \bot SA \Rightarrow [B,SA,C] = [B,SA,O] = \widehat {BIO}}\\{{\mathop{\rm Trong}\nolimits} \,(SBA),BI \bot SA}\end{array}} \right.\)
Ta có:
Xét \(\Delta BOI\) vuông tại \(O:\tan \widehat {BIO} = \frac{{BO}}{{IO}} = \frac{{a\sqrt 2 }}{{\frac{{3\sqrt {34} }}{{17}}a}} = \frac{{\sqrt {17} }}{3} \Rightarrow \widehat {BIO} \approx {54^^\circ }\)
Câu 2
Lời giải
Đặt \(t = {3^x}\) \(\left( {t > 0} \right)\), khi đó phương trình trở thành \({t^2} - 3t + 2 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = 2\end{array} \right.\,\,\,\left( {tm} \right)\)
Với \(t = 1\) ta có \({3^x} = 1 \Leftrightarrow x = 0\)
Với \(t = 2\) ta có \({3^x} = 2 \Leftrightarrow x = {\log _3}2\)
Suy ra phương trình có hai nghiệm là \({x_1} = 0\) và \({x_2} = {\log _3}2\)
Vậy \(A = 2{x_1} + 3{x_2}\)\( = 2.0 + 3{\log _3}2\)\( = 3{\log _3}2\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\frac{3}{{10}}\).
B. \(\frac{1}{2}\).
C. \(\frac{2}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.