Cầu thủ Quang Hải của đội tuyển U23 Việt nam gửi vào ngân hàng với số tiền 200.000.000 VNĐ với lãi suất \(0.5\% \) tháng. Hỏi sau 6 năm, cầu thủ Quang Hải nhận được số tiền (cả gốc lẫn lãi) là bao nhiêu, biết rằng lãi suất không thay đổi.
A. \(286.408.856\) VNĐ.
B. \(206.075.502\) đồng.
C. \(268.408.856\) đồng.
D. \(260.075.502\) đồng.
Quảng cáo
Trả lời:
Áp dụng công thức tính lãi kép \({T_n} = M{\left( {1 + r} \right)^n}\) với \(n = 72\) tháng (6 năm),\(M = 200.000.000\), \(r = 0.5\% \), ta được \({T_{72}} = 200.000.000{\left( {1 + 0.5\% } \right)^{72}} = 286.408.856\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \( \approx {54^^\circ }\)
Lời giải
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BO \bot SA}\\{BO \bot AC}\end{array} \Rightarrow BO \bot (SAC)} \right.\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBA) \cap (SAC) = SA}\\{{\mathop{\rm Trong}\nolimits} \,(SAC),OI \bot SA \Rightarrow [B,SA,C] = [B,SA,O] = \widehat {BIO}}\\{{\mathop{\rm Trong}\nolimits} \,(SBA),BI \bot SA}\end{array}} \right.\)
Ta có:
Xét \(\Delta BOI\) vuông tại \(O:\tan \widehat {BIO} = \frac{{BO}}{{IO}} = \frac{{a\sqrt 2 }}{{\frac{{3\sqrt {34} }}{{17}}a}} = \frac{{\sqrt {17} }}{3} \Rightarrow \widehat {BIO} \approx {54^^\circ }\)
Lời giải
Trả lời: \(d(S,DM) = \frac{{\sqrt {190} }}{5}a\)
Lời giải
Kẻ \(SK \bot DM\) tại \(K \Rightarrow d(S,DM) = SK\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{DM \bot SA}\\{DM \bot SK}\end{array} \Rightarrow DM \bot (SAK) \Rightarrow DM \bot AK} \right.\)
Ta có:
\( \Rightarrow \frac{{KA}}{{OD}} = \frac{{AM}}{{DM}} \Rightarrow KA = \frac{{AM \cdot OD}}{{DM}} = \frac{{\frac{3}{4}a\sqrt 2 \cdot a\sqrt 2 }}{{\sqrt {{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 2 }}{4}} \right)}^2}} }} = \frac{{3\sqrt {10} }}{5}a\)
Ta có: \(SK = \sqrt {S{A^2} + A{K^2}} = \sqrt {{{(2a)}^2} + {{\left( {\frac{{3\sqrt {10} }}{5}a} \right)}^2}} = \frac{{\sqrt {190} }}{5}a\)
Vậy \(d(S,DM) = \frac{{\sqrt {190} }}{5}a\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.