Phương trình \({9^x} - {3.3^x} + 2 = 0\) có hai nghiệm \({x_1}\), \({x_2}\) \(\left( {{x_1} < {x_2}} \right)\). Giá trị của biểu thức \(A = 2{x_1} + 3{x_2}\) bằng
Quảng cáo
Trả lời:
Đặt \(t = {3^x}\) \(\left( {t > 0} \right)\), khi đó phương trình trở thành \({t^2} - 3t + 2 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = 2\end{array} \right.\,\,\,\left( {tm} \right)\)
Với \(t = 1\) ta có \({3^x} = 1 \Leftrightarrow x = 0\)
Với \(t = 2\) ta có \({3^x} = 2 \Leftrightarrow x = {\log _3}2\)
Suy ra phương trình có hai nghiệm là \({x_1} = 0\) và \({x_2} = {\log _3}2\)
Vậy \(A = 2{x_1} + 3{x_2}\)\( = 2.0 + 3{\log _3}2\)\( = 3{\log _3}2\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \( \approx {54^^\circ }\)
Lời giải
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BO \bot SA}\\{BO \bot AC}\end{array} \Rightarrow BO \bot (SAC)} \right.\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBA) \cap (SAC) = SA}\\{{\mathop{\rm Trong}\nolimits} \,(SAC),OI \bot SA \Rightarrow [B,SA,C] = [B,SA,O] = \widehat {BIO}}\\{{\mathop{\rm Trong}\nolimits} \,(SBA),BI \bot SA}\end{array}} \right.\)
Ta có:
Xét \(\Delta BOI\) vuông tại \(O:\tan \widehat {BIO} = \frac{{BO}}{{IO}} = \frac{{a\sqrt 2 }}{{\frac{{3\sqrt {34} }}{{17}}a}} = \frac{{\sqrt {17} }}{3} \Rightarrow \widehat {BIO} \approx {54^^\circ }\)
Lời giải
Trả lời: \(d(S,DM) = \frac{{\sqrt {190} }}{5}a\)
Lời giải
Kẻ \(SK \bot DM\) tại \(K \Rightarrow d(S,DM) = SK\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{DM \bot SA}\\{DM \bot SK}\end{array} \Rightarrow DM \bot (SAK) \Rightarrow DM \bot AK} \right.\)
Ta có:
\( \Rightarrow \frac{{KA}}{{OD}} = \frac{{AM}}{{DM}} \Rightarrow KA = \frac{{AM \cdot OD}}{{DM}} = \frac{{\frac{3}{4}a\sqrt 2 \cdot a\sqrt 2 }}{{\sqrt {{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 2 }}{4}} \right)}^2}} }} = \frac{{3\sqrt {10} }}{5}a\)
Ta có: \(SK = \sqrt {S{A^2} + A{K^2}} = \sqrt {{{(2a)}^2} + {{\left( {\frac{{3\sqrt {10} }}{5}a} \right)}^2}} = \frac{{\sqrt {190} }}{5}a\)
Vậy \(d(S,DM) = \frac{{\sqrt {190} }}{5}a\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(286.408.856\) VNĐ.
B. \(206.075.502\) đồng.
C. \(268.408.856\) đồng.
D. \(260.075.502\) đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.