Câu hỏi:

16/12/2025 7 Lưu

Cho tứ diện đều \(ABCD\), \(M\) là trung điểm của \(CD\), \(N\) là điểm trên \(AD\) sao cho \(BN\) vuông góc với \(AM\). Tính tỉ số \(\frac{{AN}}{{AD}}\).

A. \(\frac{1}{4}\). 
B. \(\frac{1}{3}\). 
C. \(\frac{1}{2}\).  
D. \(\frac{2}{3}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho tứ diện đều ABCD, M là trung điểm của CD, N là điểm trên AD sao cho BN vuông góc với AM. Tính tỉ số AN/AD. (ảnh 1)

Gọi \(H\) là hình chiếu của \(B\) trên \(\left( {ACD} \right)\). Suy ra \(H\) là tâm tam giác \(ACD\).

Ta có \(\left\{ \begin{array}{l}AM \bot BH\\AM \bot BN\end{array} \right. \Rightarrow AM \bot HN\). Do đó \(HN\;{\rm{//}}\;MD\), suy ra \(\frac{{AN}}{{AD}} = \frac{2}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \( \approx {54^^\circ }\)

Lời giải

Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a,SC vuông góc (ABCD) và SC = 3a. Tính góc phẳng nhị diện [B,SA,C]? (ảnh 1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BO \bot SA}\\{BO \bot AC}\end{array} \Rightarrow BO \bot (SAC)} \right.\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBA) \cap (SAC) = SA}\\{{\mathop{\rm Trong}\nolimits} \,(SAC),OI \bot SA \Rightarrow [B,SA,C] = [B,SA,O] = \widehat {BIO}}\\{{\mathop{\rm Trong}\nolimits} \,(SBA),BI \bot SA}\end{array}} \right.\)

Ta có:

Xét \(\Delta BOI\) vuông tại \(O:\tan \widehat {BIO} = \frac{{BO}}{{IO}} = \frac{{a\sqrt 2 }}{{\frac{{3\sqrt {34} }}{{17}}a}} = \frac{{\sqrt {17} }}{3} \Rightarrow \widehat {BIO} \approx {54^^\circ }\)

Lời giải

Đặt \(t = {3^x}\) \(\left( {t > 0} \right)\), khi đó phương trình trở thành \({t^2} - 3t + 2 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = 2\end{array} \right.\,\,\,\left( {tm} \right)\)

Với \(t = 1\) ta có \({3^x} = 1 \Leftrightarrow x = 0\)

Với \(t = 2\) ta có \({3^x} = 2 \Leftrightarrow x = {\log _3}2\)

Suy ra phương trình có hai nghiệm là \({x_1} = 0\) và \({x_2} = {\log _3}2\)

Vậy \(A = 2{x_1} + 3{x_2}\)\( = 2.0 + 3{\log _3}2\)\( = 3{\log _3}2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) \(\left( {\left( {SBC} \right),\left( {ABCD} \right)} \right) = \widehat {SBA}\).
Đúng
Sai
b) \(d\left( {D,\left( {SAC} \right)} \right) = DO\).
Đúng
Sai
c) \[\left( {SC,\left( {SAD} \right)} \right) = \widehat {CSD}\]. 
Đúng
Sai
d) \[d\left( {CD,SB} \right) = BD\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP