Câu hỏi:

16/12/2025 34 Lưu

Gọi \(S\) là tập nghiệm của bất phương trình \({\log _{0,3}}\left( {4{x^2}} \right) \ge {\log _{0,3}}\left( {12x - 5} \right)\). Kí hiệu \(m\), \(M\)lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của tập \(S\). Các mệnh đề sau đúng hay sai?

a) \(M - m = 3\).  
Đúng
Sai
b) \(M - m = 1\).  
Đúng
Sai
c) \(m + M = 3\).
Đúng
Sai
d) \(m + M = 2\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai

b) Sai

c) Đúng

d) Sai

Ta có: \({\log _{0,3}}\left( {4{x^2}} \right) \ge {\log _{0,3}}\left( {12x - 5} \right) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{12x - 5 > 0\,\,\,\,}\\{4{x^2} \le 12x - 5}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > \frac{5}{{12}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{4{x^2} - 12x + 5 \le 0}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > \frac{5}{{12}}\,\,\,\,\,}\\{\frac{1}{2} \le x \le \frac{5}{2}}\end{array}} \right. \Leftrightarrow \frac{1}{2} \le x \le \frac{5}{2}\).

Tập nghiệm của bất phương trình đã cho \(S = \left[ {\frac{1}{2};\,\frac{5}{2}} \right]\).

Khi đó: \(M = \frac{5}{2}\); \(m = \frac{1}{2}\) và \(m + M = \frac{5}{2} + \frac{1}{2} = 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \( \approx {54^^\circ }\)

Lời giải

Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a,SC vuông góc (ABCD) và SC = 3a. Tính góc phẳng nhị diện [B,SA,C]? (ảnh 1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BO \bot SA}\\{BO \bot AC}\end{array} \Rightarrow BO \bot (SAC)} \right.\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBA) \cap (SAC) = SA}\\{{\mathop{\rm Trong}\nolimits} \,(SAC),OI \bot SA \Rightarrow [B,SA,C] = [B,SA,O] = \widehat {BIO}}\\{{\mathop{\rm Trong}\nolimits} \,(SBA),BI \bot SA}\end{array}} \right.\)

Ta có:

Xét \(\Delta BOI\) vuông tại \(O:\tan \widehat {BIO} = \frac{{BO}}{{IO}} = \frac{{a\sqrt 2 }}{{\frac{{3\sqrt {34} }}{{17}}a}} = \frac{{\sqrt {17} }}{3} \Rightarrow \widehat {BIO} \approx {54^^\circ }\)

Lời giải

Trả lời: \(\frac{{32}}{{\sqrt {82} }}\).

Lời giải

wGọi \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến \(d\) với đồ thị \(\left( C \right)\).

Ta có \(y' =  - 3{x^2} + 6x \Rightarrow \) hệ số góc tiếp tuyến tại điểm \(M\) là \(y'\left( {{x_0}} \right) =  - 3x_0^2 + 6{x_0}\).

Mà tiếp tuyến \(d\) vuông góc với đường thẳng \(\Delta :y = \frac{1}{9}x + \frac{{2021}}{9}\) nên \(y'\left( {{x_0}} \right) =  - \frac{1}{k} =  - 9\).

Khi đó \(3x_0^2 - 6{x_0} - 9 = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 3\\{x_0} =  - 1\end{array} \right.\).

wNhư vậy

Phương trình tiếp tuyến \({d_1}\) tại điểm \(M\left( {3;0} \right)\) là \[{d_1}:9x + y - 27 = 0\].

Phương trình tiếp tuyến \({d_2}\) tại điểm \(M\left( { - 1;4} \right)\) là \({d_2}:9x + y + 5 = 0\).

Mặt khác \({d_1}{\rm{//}}{d_2}\) nên \(d\left( {{d_1};{d_2}} \right) = \frac{{32}}{{\sqrt {82} }}\).

Câu 3

a) \(\left( {\left( {SBC} \right),\left( {ABCD} \right)} \right) = \widehat {SBA}\).
Đúng
Sai
b) \(d\left( {D,\left( {SAC} \right)} \right) = DO\).
Đúng
Sai
c) \[\left( {SC,\left( {SAD} \right)} \right) = \widehat {CSD}\]. 
Đúng
Sai
d) \[d\left( {CD,SB} \right) = BD\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP