Gọi \(S\) là tập nghiệm của bất phương trình \({\log _{0,3}}\left( {4{x^2}} \right) \ge {\log _{0,3}}\left( {12x - 5} \right)\). Kí hiệu \(m\), \(M\)lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của tập \(S\). Các mệnh đề sau đúng hay sai?
Quảng cáo
Trả lời:
|
a) Sai |
b) Sai |
c) Đúng |
d) Sai |
Ta có: \({\log _{0,3}}\left( {4{x^2}} \right) \ge {\log _{0,3}}\left( {12x - 5} \right) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{12x - 5 > 0\,\,\,\,}\\{4{x^2} \le 12x - 5}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > \frac{5}{{12}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{4{x^2} - 12x + 5 \le 0}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > \frac{5}{{12}}\,\,\,\,\,}\\{\frac{1}{2} \le x \le \frac{5}{2}}\end{array}} \right. \Leftrightarrow \frac{1}{2} \le x \le \frac{5}{2}\).
Tập nghiệm của bất phương trình đã cho \(S = \left[ {\frac{1}{2};\,\frac{5}{2}} \right]\).
Khi đó: \(M = \frac{5}{2}\); \(m = \frac{1}{2}\) và \(m + M = \frac{5}{2} + \frac{1}{2} = 3\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \( \approx {54^^\circ }\)
Lời giải
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BO \bot SA}\\{BO \bot AC}\end{array} \Rightarrow BO \bot (SAC)} \right.\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBA) \cap (SAC) = SA}\\{{\mathop{\rm Trong}\nolimits} \,(SAC),OI \bot SA \Rightarrow [B,SA,C] = [B,SA,O] = \widehat {BIO}}\\{{\mathop{\rm Trong}\nolimits} \,(SBA),BI \bot SA}\end{array}} \right.\)
Ta có:
Xét \(\Delta BOI\) vuông tại \(O:\tan \widehat {BIO} = \frac{{BO}}{{IO}} = \frac{{a\sqrt 2 }}{{\frac{{3\sqrt {34} }}{{17}}a}} = \frac{{\sqrt {17} }}{3} \Rightarrow \widehat {BIO} \approx {54^^\circ }\)
Lời giải
Trả lời: \(d(S,DM) = \frac{{\sqrt {190} }}{5}a\)
Lời giải
Kẻ \(SK \bot DM\) tại \(K \Rightarrow d(S,DM) = SK\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{DM \bot SA}\\{DM \bot SK}\end{array} \Rightarrow DM \bot (SAK) \Rightarrow DM \bot AK} \right.\)
Ta có:
\( \Rightarrow \frac{{KA}}{{OD}} = \frac{{AM}}{{DM}} \Rightarrow KA = \frac{{AM \cdot OD}}{{DM}} = \frac{{\frac{3}{4}a\sqrt 2 \cdot a\sqrt 2 }}{{\sqrt {{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 2 }}{4}} \right)}^2}} }} = \frac{{3\sqrt {10} }}{5}a\)
Ta có: \(SK = \sqrt {S{A^2} + A{K^2}} = \sqrt {{{(2a)}^2} + {{\left( {\frac{{3\sqrt {10} }}{5}a} \right)}^2}} = \frac{{\sqrt {190} }}{5}a\)
Vậy \(d(S,DM) = \frac{{\sqrt {190} }}{5}a\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(286.408.856\) VNĐ.
B. \(206.075.502\) đồng.
C. \(268.408.856\) đồng.
D. \(260.075.502\) đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.