Một bài thi trắc nghiệm có 10 câu hỏi, mỗi câu hỏi có 4 phương án trả lời trong đó có 1 phương án đúng. Biết rằng nếu trả lời đúng một câu hỏi thì thí sinh đó được 1 điểm, còn nếu trả lời sai thì thí sinh đó bị trừ 0,5 điểm. Giả sử rằng thí sinh phải bắt buộc trả lời đủ 10 câu hỏi, hãy tính xác suất để thí sinh đó được trên 5 điểm.
Quảng cáo
Trả lời:
Trả lời: \(0,0035.\)
Lời giải
Gọi \(x \in \mathbb{N},x \le 10\) là số câu trả lời sai của thí sinh. Khi đó điểm số của thí sinh là \(10 - x - 0,5x\).
Để thí sinh đạt trên 5 điểm thì \(10 - x - 0,5x > 5 \Leftrightarrow \frac{{10}}{3} > x\). Tức là thí sinh đó trả lời sai ko quá 3 câu.
Xác suất để thí sinh trả lời sai 1 câu là 0,75.
Xác suất để học sinh trả lời sai không quá 3 câu là
\({(0,25)^{10}} + C_{10}^1{(0,25)^9} \cdot 0,75 + C_{10}^2{(0,25)^8} \cdot {0,75^2} + C_{10}^3{(0,25)^7}.{(0,75)^3} \approx 0,0035.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \( \approx {54^^\circ }\)
Lời giải
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BO \bot SA}\\{BO \bot AC}\end{array} \Rightarrow BO \bot (SAC)} \right.\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBA) \cap (SAC) = SA}\\{{\mathop{\rm Trong}\nolimits} \,(SAC),OI \bot SA \Rightarrow [B,SA,C] = [B,SA,O] = \widehat {BIO}}\\{{\mathop{\rm Trong}\nolimits} \,(SBA),BI \bot SA}\end{array}} \right.\)
Ta có:
Xét \(\Delta BOI\) vuông tại \(O:\tan \widehat {BIO} = \frac{{BO}}{{IO}} = \frac{{a\sqrt 2 }}{{\frac{{3\sqrt {34} }}{{17}}a}} = \frac{{\sqrt {17} }}{3} \Rightarrow \widehat {BIO} \approx {54^^\circ }\)
Câu 2
Lời giải
Đặt \(t = {3^x}\) \(\left( {t > 0} \right)\), khi đó phương trình trở thành \({t^2} - 3t + 2 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = 2\end{array} \right.\,\,\,\left( {tm} \right)\)
Với \(t = 1\) ta có \({3^x} = 1 \Leftrightarrow x = 0\)
Với \(t = 2\) ta có \({3^x} = 2 \Leftrightarrow x = {\log _3}2\)
Suy ra phương trình có hai nghiệm là \({x_1} = 0\) và \({x_2} = {\log _3}2\)
Vậy \(A = 2{x_1} + 3{x_2}\)\( = 2.0 + 3{\log _3}2\)\( = 3{\log _3}2\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) \[f'(2) = 2\]
b) \[f(2) = 2\]
c) \(f\left( 2 \right) + f'\left( 2 \right) = 4\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.