Câu hỏi:

17/12/2025 77 Lưu

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh là \(a > 0\). Khi đó, khoảng cách giữa hai đường thẳng chéo nhau \(AB'\) và \(BC'\) là

A. \(\frac{{a\sqrt 3 }}{2}\).                                 

B. \(\frac{{a\sqrt 3 }}{3}\). 

C. \(\frac{{a\sqrt 2 }}{3}\). 

D. \(\frac{{a\sqrt 6 }}{3}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình lập phương ABCD.A'B'C'D' có cạnh là a > 0. Khi đó, khoảng cách giữa hai đường thẳng chéo nhau AB' và BC' là (ảnh 1)

Gọi \(O\) là tâm hình vuông \(ABCD\). Trong mặt phẳng \(\left( {ACC'A'} \right)\), kẻ \(CH \bot C'O\) tại \(H\),

mà \(CH \bot BD\) (do \(BD \bot \left( {ACC'A'} \right)\)) nên \(CH \bot \left( {C'BD} \right)\)\( \Rightarrow d\left( {C;C'BD} \right) = CH\)

Ta có: \(AB'\;{\rm{//}}\;\left( {C'BD} \right)\)\( \Rightarrow d\left( {AB',BC'} \right) = d\left( {AB',\left( {C'BD} \right)} \right) = d\left( {A,\left( {C'BD} \right)} \right) = d\left( {C,\left( {C'BD} \right)} \right) = CH\)

Xét \(\Delta \)\(C'CO\) vuông tại \(C\), đường cao \(CH\):

\(\frac{1}{{C{H^2}}} = \frac{1}{{C{O^2}}} + \frac{1}{{C{{C'}^2}}} = \frac{3}{{{a^2}}} \Rightarrow CH = \frac{{a\sqrt 3 }}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2a, AD = a. SA vuông góc với mặt phẳng đáy. SA = a căn bậc hai 3. Cosin của góc giữa SC và mặt đáy bằng: (ảnh 1)
 
Media VietJack

Câu 2

A. \(\left( {SAC} \right) \bot \left( {SMB} \right)\). 

B. \(\left( {SAC} \right) \bot \left( {SBD} \right)\).  

C. \(\left( {SBC} \right) \bot \left( {SMB} \right)\).    

D. \(\left( {SAB} \right) \bot \left( {SBD} \right)\).

Lời giải

Chọn A

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 1)

+ Ta có: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 2).

+ Xét tam giác vuông \(ABM\) có: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 3)

Xét tam giác vuông \(ACD\) có: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 4). Ta có:

\(\cot \widehat {AIM} = \cot \left( {{{180}^0} - \left( {\widehat {AMB} + \widehat {CAD}} \right)} \right) =  - \cot \left( {\widehat {AMB} + \widehat {CAD}} \right)\) \[ =  - \frac{{1 - \tan \widehat {AMB}.\tan \widehat {CAD}}}{{\tan \widehat {AMB} + \tan \widehat {CAD}}} = 0\]

\( \Rightarrow \widehat {AIM} = {90^0}\) Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 5)

Từ (1) và (2) suy ra: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 6)Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 7) nên Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 8)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Biến cố xung khắc với biến cố \(A\) là biến cố \(\bar A\) được phát biểu như sau: "Số chấm xuất hiện trên xúc xắc ở lần thứ nhất là số chẵn"

Đúng
Sai

b) \(P(\bar A) = \frac{{n(\bar A)}}{{n(\Omega )}} = \frac{1}{2}\)

Đúng
Sai

c) \(P(\bar B) = P\left( {\overline A } \right)\)

Đúng
Sai

d) \(P(\overline {AB} ) = \frac{{n(\overline {AB} )}}{{n(\Omega )}} = \frac{1}{3}\)

Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP