Câu hỏi:

17/12/2025 28 Lưu

Cho hình tam giác đều \(S.ABC\) có cạnh đáy bằng \(a\) và cạnh bên bằng \(b\) \(\left( {a \ne b} \right)\). Các mệnh đề sau đúng hay sai?

a) Đoạn thẳng \(MN\) là đường vuông góc chung của \(AB\) và \(SC\) (\(M\) và \(N\) lần lượt là trung điểm của \(AB\) và \(SC\)).

Đúng
Sai

b) Góc giữa các cạnh bên và mặt đáy bằng nhau.

Đúng
Sai

c) Hình chiếu vuông góc của \(S\) lên trên mặt phẳng \(\left( {ABC} \right)\) là trọng tâm tam giác \(ABC\).

Đúng
Sai
d) \(SA\) vuông góc với \(BC\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai

b) Đúng

c) Đúng

d) Đúng

Cho hình tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng b (a khác b). Các mệnh đề sau đúng hay sai? (ảnh 1)


 \(\Delta SAG = \Delta SBG = \Delta SCG\). Suy ra góc giữa các cạnh bên và đáy bằng nhau.

 \[\left\{ \begin{array}{l}SA = SB = SC\\AB = AC = BC\end{array} \right.\], suy ra hình chiếu vuông góc của \(S\) lên trên mặt phẳng \(\left( {ABC} \right)\) là trọng tâm tam giác \(ABC\).

 \(BC \bot \left( {SAI} \right) \Rightarrow BC \bot SA\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(\widehat {SOC} = {106,1^0}\)

Lời giải

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a,SA vuông góc (ABCD). Biết góc giữa SC và mặt phẳng (ABCD) là 60 độ. Tính góc phẳng nhị diện [S,BD,C]? (ảnh 1)

Ta có: \(SA \bot (ABCD)\) tại \(A\) và \(SC\) cắt mp \((ABCD)\) tại \(C\)

\( \Rightarrow AC\) là hình chiếu của  trên mp \((ABCD)\)

\( \Rightarrow (SC,(ABCD)) = (SC,AC) = \widehat {SCA} = {60^^\circ }\)

Ta có: \( \Rightarrow SA = AC \cdot \tan {60^^\circ } = a\sqrt 2  \cdot \sqrt 3  = \sqrt 6 a\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BD \bot SA}\\{BD \bot AC}\end{array} \Rightarrow BD \bot (SAC)} \right.\)\(SC\)\(\Delta SAO\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBD) \cap (CBD) = BD}\\{{\mathop{\rm Trong}\nolimits} \,(CBD),CO \bot BD \Rightarrow [S,BD,C] = \widehat {SOC}}\\{{\mathop{\rm Trong}\nolimits} \,(SBC),SO \bot BD}\end{array}} \right.\)

Xét  vuông tại \(A:\tan \widehat {SOA} = \frac{{SA}}{{AO}} = \frac{{a\sqrt 6 }}{{\frac{{a\sqrt 2 }}{2}}} = 2\sqrt 3  \Rightarrow \widehat {SOA} = {73,9^0}\)

\( \Rightarrow \widehat {SOC} = {106,1^0}\)

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2a, AD = a. SA vuông góc với mặt phẳng đáy. SA = a căn bậc hai 3. Cosin của góc giữa SC và mặt đáy bằng: (ảnh 1)
 
Media VietJack

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( {SAC} \right) \bot \left( {SMB} \right)\). 

B. \(\left( {SAC} \right) \bot \left( {SBD} \right)\).  

C. \(\left( {SBC} \right) \bot \left( {SMB} \right)\).    

D. \(\left( {SAB} \right) \bot \left( {SBD} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP