Câu hỏi:

17/12/2025 81 Lưu

Phần 3. Câu trả lời ngắn.

Thí sinh trả lời đáp án từ câu 1 đến câu 6.

Ở thành phố \(X\), xác suất để một ngày là nắng ráo là 0,8. Nếu trời nắng thì xác suất để Minh đi ra biển chơi là 0,7. Nếu trời mưa thì xác suất để Minh ra biển chơi là 0,1. Xác định xác suất mà Minh sẽ đi biển chơi vào một ngày bất kì.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

\(0,58\)

Trả lời: \(0,58\)

Lời giải

Rõ ràng việc Minh đi biển hay không hoàn toàn phụ thuộc vào thời tiết.

Ta có sơ đồ cây như sau:

Ở thành phố X, xác suất để một ngày là nắng ráo là 0,8. Nếu trời nắng thì xác suất để Minh đi ra biển chơi là 0,7. Nếu trời mưa thì xác suất để Minh ra biển chơi là 0,1. Xác định xác suất mà Minh sẽ đi biển chơi vào một ngày bất kì. (ảnh 1)

Trong đó: \(N\) là biến cố "Trời nắng", \(M\) là biến cố “Trời mưa", \(B\) là biến cố "Đi biển”.

Xác suất Minh đi biển chơi là: \(0,8 \cdot 0,7 + 0,2 \cdot 0,1 = 0,58\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2a, AD = a. SA vuông góc với mặt phẳng đáy. SA = a căn bậc hai 3. Cosin của góc giữa SC và mặt đáy bằng: (ảnh 1)
 
Media VietJack

Câu 2

A. \(\left( {SAC} \right) \bot \left( {SMB} \right)\). 

B. \(\left( {SAC} \right) \bot \left( {SBD} \right)\).  

C. \(\left( {SBC} \right) \bot \left( {SMB} \right)\).    

D. \(\left( {SAB} \right) \bot \left( {SBD} \right)\).

Lời giải

Chọn A

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 1)

+ Ta có: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 2).

+ Xét tam giác vuông \(ABM\) có: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 3)

Xét tam giác vuông \(ACD\) có: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 4). Ta có:

\(\cot \widehat {AIM} = \cot \left( {{{180}^0} - \left( {\widehat {AMB} + \widehat {CAD}} \right)} \right) =  - \cot \left( {\widehat {AMB} + \widehat {CAD}} \right)\) \[ =  - \frac{{1 - \tan \widehat {AMB}.\tan \widehat {CAD}}}{{\tan \widehat {AMB} + \tan \widehat {CAD}}} = 0\]

\( \Rightarrow \widehat {AIM} = {90^0}\) Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 5)

Từ (1) và (2) suy ra: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 6)Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 7) nên Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a căn bậc hai 2 ,  SA vuông góc ( ABCD). Gọi M là trung điểm của AD, I là giao điểm của AC và BM. Khẳng định nào sau đây đúng? (ảnh 8)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Biến cố xung khắc với biến cố \(A\) là biến cố \(\bar A\) được phát biểu như sau: "Số chấm xuất hiện trên xúc xắc ở lần thứ nhất là số chẵn"

Đúng
Sai

b) \(P(\bar A) = \frac{{n(\bar A)}}{{n(\Omega )}} = \frac{1}{2}\)

Đúng
Sai

c) \(P(\bar B) = P\left( {\overline A } \right)\)

Đúng
Sai

d) \(P(\overline {AB} ) = \frac{{n(\overline {AB} )}}{{n(\Omega )}} = \frac{1}{3}\)

Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP