Câu hỏi:

17/12/2025 26 Lưu

Cho hàm số \(y = {x^3} - 3{x^2} + 2\). Có bao nhiêu tiếp tuyến với đồ thị hàm số đi qua điểm \(A\left( {1;0} \right)\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1

Trả lời: 1

Lời giải

Gọi đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\) là \(\left( C \right)\).

Ta có \(y' = 3{x^2} - 6x\)

Gọi \(M\left( {{x_0};{y_0}} \right) \in \left( C \right)\) là tiếp điểm. Suy ra phương trình tiếp tuyến với \(\left( C \right)\) tại \(M\) là

\(y = \left( {3x_0^2 - 6{x_0}} \right)\left( {x - {x_0}} \right) + x_0^3 - 3x_0^2 + 2\) (d).

Vì \(\left( d \right)\) đi qua điểm \(A\left( {1;0} \right)\) nên \(\left( {3x_0^2 - 6{x_0}} \right)\left( {1 - {x_0}} \right) + x_0^3 - 3x_0^2 + 2 = 0\)

\(\left( {3x_0^2 - 6{x_0}} \right)\left( {1 - {x_0}} \right) + x_0^3 - 3x_0^2 + 2 = 0 \Leftrightarrow \left( {3x_0^2 - 6{x_0}} \right)\left( {1 - {x_0}} \right) + \left( {{x_0} - 1} \right)\left( {x_0^2 - 2{x_0} - 2} \right) = 0\)

\( \Leftrightarrow \left( {{x_0} - 1} \right)\left( { - 2x_0^2 + 4{x_0} - 2} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}{x_0} = 1\\ - 2x_0^2 + 4{x_0} - 2 = 0\end{array} \right.\)\( \Leftrightarrow {x_0} = 1\).

Suy ra có \(1\) tiếp tuyến với \(\left( C \right)\) đi qua điểm \(A\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(\widehat {SOC} = {106,1^0}\)

Lời giải

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a,SA vuông góc (ABCD). Biết góc giữa SC và mặt phẳng (ABCD) là 60 độ. Tính góc phẳng nhị diện [S,BD,C]? (ảnh 1)

Ta có: \(SA \bot (ABCD)\) tại \(A\) và \(SC\) cắt mp \((ABCD)\) tại \(C\)

\( \Rightarrow AC\) là hình chiếu của  trên mp \((ABCD)\)

\( \Rightarrow (SC,(ABCD)) = (SC,AC) = \widehat {SCA} = {60^^\circ }\)

Ta có: \( \Rightarrow SA = AC \cdot \tan {60^^\circ } = a\sqrt 2  \cdot \sqrt 3  = \sqrt 6 a\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BD \bot SA}\\{BD \bot AC}\end{array} \Rightarrow BD \bot (SAC)} \right.\)\(SC\)\(\Delta SAO\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBD) \cap (CBD) = BD}\\{{\mathop{\rm Trong}\nolimits} \,(CBD),CO \bot BD \Rightarrow [S,BD,C] = \widehat {SOC}}\\{{\mathop{\rm Trong}\nolimits} \,(SBC),SO \bot BD}\end{array}} \right.\)

Xét  vuông tại \(A:\tan \widehat {SOA} = \frac{{SA}}{{AO}} = \frac{{a\sqrt 6 }}{{\frac{{a\sqrt 2 }}{2}}} = 2\sqrt 3  \Rightarrow \widehat {SOA} = {73,9^0}\)

\( \Rightarrow \widehat {SOC} = {106,1^0}\)

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2a, AD = a. SA vuông góc với mặt phẳng đáy. SA = a căn bậc hai 3. Cosin của góc giữa SC và mặt đáy bằng: (ảnh 1)
 
Media VietJack

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( {SAC} \right) \bot \left( {SMB} \right)\). 

B. \(\left( {SAC} \right) \bot \left( {SBD} \right)\).  

C. \(\left( {SBC} \right) \bot \left( {SMB} \right)\).    

D. \(\left( {SAB} \right) \bot \left( {SBD} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP