Câu hỏi:

18/12/2025 107 Lưu

Trong mặt phẳng với hệ trục tọa độ \[Oxy\], cho các điểm \[A\left( { - 2;1} \right)\], \(B\left( {3; - 2} \right)\)\[C\left( {1; - 1} \right)\].

a) Nếu đường tròn có tâm là điểm \(A\) và có bán kính \(R = 2\) thì đường tròn có phương trình là \({\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} = 2\).
Đúng
Sai
b) Nếu đường tròn có tâm là điểm \(B\) và có bán kính \(R = 3\) thì đường tròn có phương trình là \({\left( {x + 3} \right)^2} + {\left( {y - 2} \right)^2} = 9\).
Đúng
Sai
c) Nếu đường tròn có tâm là điểm \(C\) và có bán kính bằng độ dài đoạn \(AB\) thì đường tròn có phương trình là \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 34\).
Đúng
Sai
d) Nếu đường tròn có tâm là điểm \(B\) và đường tròn đi qua điểm \(C\) thì đường tròn có phương trình là \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 5\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai: Nếu đường tròn có tâm là điểm \(A\) và có bán kính \(R = 2\) thì đường tròn có phương trình là \({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} = {2^2} \Leftrightarrow {\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} = 4\).

b) Sai: Nếu đường tròn có tâm là điểm \(B\) và có bán kính \(R = 3\) thì đường tròn có phương trình là \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 9\).

c) Đúng: Ta có \(AB = \sqrt {{{\left( {3 + 2} \right)}^2} + {{\left( { - 2 - 1} \right)}^2}}  = \sqrt {34} \).

Nếu đường tròn có tâm là điểm \(C\) và có bán kính \(R = AB = \sqrt {34} \) thì đường tròn có phương trình là \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 34\).

d) Đúng: Ta có \(BC = \sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( { - 1 + 2} \right)}^2}}  = \sqrt 5 \).

Đường tròn có tâm là điểm \(B\) và đường tròn đi qua điểm \(C\) thì đường tròn có bán kính

\(R = BC = \sqrt 5 \).

Nếu đường tròn có tâm là điểm \(B\) và có bán kính \(R = \sqrt 5 \) thì đường tròn có phương trình là \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Số cách chọn ra 6 bông hoa chỉ có đúng một màu là 15 cách.
Đúng
Sai
b) Số cách chọn ra 6 bông hoa chỉ có đúng hai màu là 105 cách.
Đúng
Sai
c) Số cách chọn ra 6 bông hoa có ít nhất hai màu là 5005 cách.
Đúng
Sai
d) Số cách chọn ra 6 bông hoa có đủ cả ba màu là 1145 cách.
Đúng
Sai

Lời giải

a) Sai: Chỉ có đúng một màu (màu vàng) là: \(C_7^6 = 7\)cách.

b) Sai: Chọn 6 bông bất kì từ 15 bông có: \(C_{15}^6 = 5005\) cách.

Chọn hai màu hồng, xanh có \(C_3^2.C_5^4 + C_3^3.C_5^3 = 25\) cách.

Chọn hai màu hồng, vàng có \(C_3^3.C_7^3 + C_3^2.C_7^4 + C_3^1.C_7^5 = 203\) cách.

Chọn hai màu xanh, vàng có \(C_5^5.C_7^1 + C_5^4.C_7^2 + C_5^3.C_7^3 + C_5^2.C_7^4 + C_5^1.C_7^5 = 917\)cách.

Chỉ có đúng hai màu là \[25 + 203 + 917 = 1145\]cách.

c) Sai: Ít nhất hai màu là\[5005 - 7 = 4998\].

d) Sai: Đủ cả ba màu là \(5005 - 7 - 1145 = 3853\).

Câu 2

A. \(7770\).                
B. \(46620\).            
C. \(6\).                           
D. \(5234\).

Lời giải

Mỗi cách chọn 3 học sinh để bầu vào chức lớp trưởng, lớp phó và bí thư là một chỉnh hợp chập 3 của 37 phần tử. Vậy số cách chọn là \(A_{37}^3 = 46620\) cách.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP