Câu hỏi:

18/12/2025 5 Lưu

Một bó hoa có 15 bông hoa gồm: 3 bông màu hồng, 5 bông màu xanh còn lại là màu vàng.

a) Số cách chọn ra 6 bông hoa chỉ có đúng một màu là 15 cách.
Đúng
Sai
b) Số cách chọn ra 6 bông hoa chỉ có đúng hai màu là 105 cách.
Đúng
Sai
c) Số cách chọn ra 6 bông hoa có ít nhất hai màu là 5005 cách.
Đúng
Sai
d) Số cách chọn ra 6 bông hoa có đủ cả ba màu là 1145 cách.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai: Chỉ có đúng một màu (màu vàng) là: \(C_7^6 = 7\)cách.

b) Sai: Chọn 6 bông bất kì từ 15 bông có: \(C_{15}^6 = 5005\) cách.

Chọn hai màu hồng, xanh có \(C_3^2.C_5^4 + C_3^3.C_5^3 = 25\) cách.

Chọn hai màu hồng, vàng có \(C_3^3.C_7^3 + C_3^2.C_7^4 + C_3^1.C_7^5 = 203\) cách.

Chọn hai màu xanh, vàng có \(C_5^5.C_7^1 + C_5^4.C_7^2 + C_5^3.C_7^3 + C_5^2.C_7^4 + C_5^1.C_7^5 = 917\)cách.

Chỉ có đúng hai màu là \[25 + 203 + 917 = 1145\]cách.

c) Sai: Ít nhất hai màu là\[5005 - 7 = 4998\].

d) Sai: Đủ cả ba màu là \(5005 - 7 - 1145 = 3853\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(7770\).                
B. \(46620\).            
C. \(6\).                           
D. \(5234\).

Lời giải

Mỗi cách chọn 3 học sinh để bầu vào chức lớp trưởng, lớp phó và bí thư là một chỉnh hợp chập 3 của 37 phần tử. Vậy số cách chọn là \(A_{37}^3 = 46620\) cách.

Lời giải

Gọi \(x\) (triệu đồng) là số tiền cần giảm giá bán mỗi máy tính xách tay (\(0 \le x < 3\)).

Gọi \(y\) là số máy tính bán được tăng thêm sau khi giảm giá bán.

Từ giả thiết ta có \(\frac{x}{{0,5}} = \frac{y}{5} \Leftrightarrow y = 10x\).

Suy ra, số máy tính bán được trong một tháng là \(20 + 10x\).

Khi đó, lợi nhuận thu được là: \(f\left( x \right) = \left( {3 - x} \right)\left( {20 + 10x} \right)\) với \(0 \le x < 3\).

Lợi nhuận thu được cao nhất khi hàm số \(f\left( x \right)\) đạt giá trị lớn nhất trên \(\left[ {0\,;\,3} \right)\)

Ta có \(f\left( x \right) =  - 10{x^2} + 10x + 60 =  - 10{\left( {x - \frac{1}{2}} \right)^2} + \frac{{125}}{2} \le \frac{{125}}{2},\forall x \in \left[ {0;3} \right)\).

Suy ra giá trị lớn nhất của \(f\left( x \right)\) trên \(\left[ {0\,;\,3} \right)\) bằng \(\frac{{125}}{2}\), đạt được khi \(x = \frac{1}{2}\).

Do đó, lợi nhuận thu được là cao nhất khi giảm giá bán mỗi máy tính \(0,5\) triệu đồng.

Vậy giá bán mỗi máy tính là \(17,5\) triệu đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP