Câu hỏi:

18/12/2025 4 Lưu

Trong mặt phẳng \(Oxy\), cho tam giác \[ABC\]\[A\left( {2\,;\,0} \right),\,\,B\left( {0\,;\,3} \right)\] và C3;1

a) Phương trình của đường thẳng \(d\) đi qua \[B\] và song song với \[AC\]\(x + 5y - 15 = 0\).
Đúng
Sai
b) Phương trình của đường trung trực đoạn thẳng \(BC\)\(\left\{ \begin{array}{l}x = - \frac{3}{2} + 2t\\y = 2 - 3t\end{array} \right.\) với \(t \in \mathbb{R}\).
Đúng
Sai
c) Đường thẳng \(AB\) có phương trình là \(3x + 2y + 6 = 0\).
Đúng
Sai
d) Đường cao ứng với đỉnh \(C\) của tam giác \(ABC\) đi qua điểm \(M\left( {2;3} \right)\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\overrightarrow {AC}  = \left( { - 5;1} \right)\) nên đường thẳng \(d\) có một vectơ pháp tuyến là \(\overrightarrow {n\,}  = \left( {1;5} \right)\).

Phương trình của đường thẳng \(d\) là \(1.\left( {x - 0} \right) + 5.\left( {y - 3} \right) = 0 \Leftrightarrow x + 5y - 15 = 0\).

Vậy phương trình tổng quát đường thẳng \(d\) là \(x + 5y - 15 = 0\)

Đường thẳng \(\Delta \) là trung trực của đoạn thẳng \(BC\) nhận \[\overrightarrow {CB}  = \left( {3;2} \right)\] làm véc tơ pháp tuyến nên véc tơ chỉ phương của \(\Delta \) là \(\overrightarrow u  = \left( {2; - 3} \right)\). Mà \(\Delta \) đi qua trung điểm \(I\left( { - \frac{3}{2};2} \right)\) của \(BC\) nên \(\Delta \) có phương trình là \(\left\{ \begin{array}{l}x =  - \frac{3}{2} + 2t\\y = 2 - 3t\end{array} \right.\) với \(t \in \mathbb{R}\).

Đường thẳng \(AB\) có véc tơ chỉ phương là \[\overrightarrow {AB}  = \left( { - 2\,;\,3} \right)\] nên \(AB\) có véc tơ pháp tuyến là \(\overrightarrow n  = \left( {3;2} \right)\) và đi qua điểm \[A\left( {2\,;\,0} \right)\] nên \(AB\) có phương trình là

\(3\left( {x - 2} \right) + 2\left( {y - 0} \right) = 0 \Leftrightarrow 3x + 2y - 6 = 0\)

Đường cao ứng với đỉnh \(C\) của tam giác \(ABC\) đi qua điểm \[C\left( {--3\,;\,1} \right)\] và nhận \(\overrightarrow {BA}  = \left( {2; - 3} \right)\) làm véc tơ pháp tuyến nên có phương trình là

\(2\left( {x + 3} \right) - 3\left( {y - 1} \right) = 0 \Leftrightarrow 2x - 3y + 9 = 0\).

Từ đó dễ thấy đường thẳng này không đi qua điểm \(M\left( {2;3} \right)\).

a) Đúng: Phương trình của đường thẳng \(d\) đi qua \[B\] và song song với \[AC\] là \(x + 5y - 15 = 0\).

b) Đúng: Phương trình của đường trung trực đoạn thẳng \(BC\) là \(\left\{ \begin{array}{l}x =  - \frac{3}{2} + 2t\\y = 2 - 3t\end{array} \right.\) với \(t \in \mathbb{R}\).

c) Sai: Đường thẳng \(AB\) có phương trình là \(3x + 2y + 6 = 0\).

d) Sai: Đường cao ứng với đỉnh \(C\) của tam giác \(ABC\) đi qua điểm \(M\left( {2;3} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trường hợp 1: Lấy \(1\) quả màu vàng và \(2\) quả màu đỏ có: \(C_8^2 = 28\) cách.

Trường hợp 2: Lấy \(1\) quả màu vàng và \(2\) quả màu xanh có: \(C_3^2 = 3\) cách.

Trường hợp 3: Lấy \(1\) quả màu đỏ và \(2\) quả màu xanh có: \(C_8^1.C_3^2 = 24\) cách.

Trường hợp 4: Lấy \(1\) quả màu xanh và \(2\) quả màu đỏ có: \(C_3^1.C_8^2 = 84\) cách.

Số cách để lấy được \(3\) quả cầu có đúng hai màu là: \(28 + 3 + 24 + 84 = 139\) cách.

Cách khác:

Số cách lấy \(3\) quả bất kì: \(C_{12}^3 = 220\).

Số cách lấy \(3\) quả có đủ \(3\) màu: \(C_8^1.C_3^1.C_1^1 = 24\).

Số cách lấy \(3\) quả chỉ có \(1\) màu: \(C_8^3 + C_3^3 = 57\).

Vậy số cách lấy thỏa mãn yêu cầu bài toán là \(220 - 24 - 57 = 139\).

Lời giải

Tổng trọng lượng cá thu được sau một vụ là: \(T\left( n \right) = n\left( {360 - 10n} \right) = 360n - 10{n^2}\).

Đây là một tam thức bậc hai với ẩn là \(n\) có hệ số \(a =  - 10 < 0\) và \(b = 360\) \( \Rightarrow \frac{{ - b}}{{2a}} = \frac{{ - 360}}{{2.\left( { - 10} \right)}} = 18\)

Khi đó \(T\left( {18} \right) = 3240\).

Vậy người nuôi cần thả \(18\) con cá trên một đơn vị diện tích để đạt tổng trọng lượng cá lớn nhất là \(3240\) (đơn vị khối lượng).

Câu 4

A. \[\overrightarrow n = \left( {1; - 2} \right)\]                     
B. \[\overrightarrow n = \left( {2;1} \right)\]            
C. \[\overrightarrow n = \left( { - 2;3} \right)\]        
D. \[\overrightarrow n = \left( {1;3} \right)\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(45\).                    
B. \(4745\).              
C. \(90\).                         
D. \(106\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[A = \left\{ 1 \right\}\] \[B = \left\{ {2,3,4,5,6} \right\}\].                   
B. \[C = \left\{ {1,4,5} \right\}\] \[D = \left\{ {2,3,6} \right\}\].
C. \[E = \left\{ {1,5,6} \right\}\] \[F = \left\{ {2,3} \right\}\].                   
D. \[\Omega \] \[\emptyset \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Với \(m \ne 2\) thì \(f\left( x \right)\) là tam thức bậc hai.
Đúng
Sai
b) Khi \(m = 3\) thì \(f\left( x \right)\) luôn nhận giá trị dương với mọi \(x \in \mathbb{R}\).
Đúng
Sai
c) Tam thức bậc hai \[f\left( x \right)\] luôn nhận giá trị âm với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(m \le 2\)
Đúng
Sai
d) Với mọi giá trị của \(m\) thì \(f\left( x \right) = 0\) đều có nghiệm.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP