Câu hỏi:

18/12/2025 127 Lưu

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Khi nuôi cá thí nghiệm trong hồ, một nhà sinh học tìm được quy luật rằng: Nếu trên mỗi đơn vị diện tích của mặt hồ có \(n\) con cá thì trung bình mỗi con cá sau một vụ cân nặng \(P\left( n \right) = 360 - 10n\)(đơn vị khối lượng). Hỏi người nuôi phải thả bao nhiêu con cá trên một đơn vị diện tích để trọng lượng cá sau mỗi vụ thu được là nhiều nhất?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tổng trọng lượng cá thu được sau một vụ là: \(T\left( n \right) = n\left( {360 - 10n} \right) = 360n - 10{n^2}\).

Đây là một tam thức bậc hai với ẩn là \(n\) có hệ số \(a =  - 10 < 0\) và \(b = 360\) \( \Rightarrow \frac{{ - b}}{{2a}} = \frac{{ - 360}}{{2.\left( { - 10} \right)}} = 18\)

Khi đó \(T\left( {18} \right) = 3240\).

Vậy người nuôi cần thả \(18\) con cá trên một đơn vị diện tích để đạt tổng trọng lượng cá lớn nhất là \(3240\) (đơn vị khối lượng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Phương trình của đường thẳng \(d\) đi qua \[B\] và song song với \[AC\]\(x + 5y - 15 = 0\).
Đúng
Sai
b) Phương trình của đường trung trực đoạn thẳng \(BC\)\(\left\{ \begin{array}{l}x = - \frac{3}{2} + 2t\\y = 2 - 3t\end{array} \right.\) với \(t \in \mathbb{R}\).
Đúng
Sai
c) Đường thẳng \(AB\) có phương trình là \(3x + 2y + 6 = 0\).
Đúng
Sai
d) Đường cao ứng với đỉnh \(C\) của tam giác \(ABC\) đi qua điểm \(M\left( {2;3} \right)\).
Đúng
Sai

Lời giải

Ta có \(\overrightarrow {AC}  = \left( { - 5;1} \right)\) nên đường thẳng \(d\) có một vectơ pháp tuyến là \(\overrightarrow {n\,}  = \left( {1;5} \right)\).

Phương trình của đường thẳng \(d\) là \(1.\left( {x - 0} \right) + 5.\left( {y - 3} \right) = 0 \Leftrightarrow x + 5y - 15 = 0\).

Vậy phương trình tổng quát đường thẳng \(d\) là \(x + 5y - 15 = 0\)

Đường thẳng \(\Delta \) là trung trực của đoạn thẳng \(BC\) nhận \[\overrightarrow {CB}  = \left( {3;2} \right)\] làm véc tơ pháp tuyến nên véc tơ chỉ phương của \(\Delta \) là \(\overrightarrow u  = \left( {2; - 3} \right)\). Mà \(\Delta \) đi qua trung điểm \(I\left( { - \frac{3}{2};2} \right)\) của \(BC\) nên \(\Delta \) có phương trình là \(\left\{ \begin{array}{l}x =  - \frac{3}{2} + 2t\\y = 2 - 3t\end{array} \right.\) với \(t \in \mathbb{R}\).

Đường thẳng \(AB\) có véc tơ chỉ phương là \[\overrightarrow {AB}  = \left( { - 2\,;\,3} \right)\] nên \(AB\) có véc tơ pháp tuyến là \(\overrightarrow n  = \left( {3;2} \right)\) và đi qua điểm \[A\left( {2\,;\,0} \right)\] nên \(AB\) có phương trình là

\(3\left( {x - 2} \right) + 2\left( {y - 0} \right) = 0 \Leftrightarrow 3x + 2y - 6 = 0\)

Đường cao ứng với đỉnh \(C\) của tam giác \(ABC\) đi qua điểm \[C\left( {--3\,;\,1} \right)\] và nhận \(\overrightarrow {BA}  = \left( {2; - 3} \right)\) làm véc tơ pháp tuyến nên có phương trình là

\(2\left( {x + 3} \right) - 3\left( {y - 1} \right) = 0 \Leftrightarrow 2x - 3y + 9 = 0\).

Từ đó dễ thấy đường thẳng này không đi qua điểm \(M\left( {2;3} \right)\).

a) Đúng: Phương trình của đường thẳng \(d\) đi qua \[B\] và song song với \[AC\] là \(x + 5y - 15 = 0\).

b) Đúng: Phương trình của đường trung trực đoạn thẳng \(BC\) là \(\left\{ \begin{array}{l}x =  - \frac{3}{2} + 2t\\y = 2 - 3t\end{array} \right.\) với \(t \in \mathbb{R}\).

c) Sai: Đường thẳng \(AB\) có phương trình là \(3x + 2y + 6 = 0\).

d) Sai: Đường cao ứng với đỉnh \(C\) của tam giác \(ABC\) đi qua điểm \(M\left( {2;3} \right)\).

Câu 2

a) Với \(m \ne 2\) thì \(f\left( x \right)\) là tam thức bậc hai.
Đúng
Sai
b) Khi \(m = 3\) thì \(f\left( x \right)\) luôn nhận giá trị dương với mọi \(x \in \mathbb{R}\).
Đúng
Sai
c) Tam thức bậc hai \[f\left( x \right)\] luôn nhận giá trị âm với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(m \le 2\)
Đúng
Sai
d) Với mọi giá trị của \(m\) thì \(f\left( x \right) = 0\) đều có nghiệm.
Đúng
Sai

Lời giải

a) Đúng: Với \(m \ne 2\) thì \(f\left( x \right)\) là tam thức bậc hai.

b) Sai: Khi \(m = 3\) thì \(f\left( x \right)\) luôn nhận giá trị dương với mọi \(x \in \mathbb{R}\).

Khi \(m = 3\) thì \[f\left( x \right) = {x^2} - 4x + 3\] nên \(f\left( x \right) > 0 \Leftrightarrow {x^2} - 4x + 3 > 0 \Leftrightarrow \left[ \begin{array}{l}x > 3\\x < 1\end{array} \right.\)

c) Sai: Tam thức bậc hai \[f\left( x \right)\] luôn nhận giá trị âm với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(m \le 2\)

Nếu \(m = 2\) thì \[f\left( x \right) =  - 2x + 3 \Rightarrow f\left( x \right) < 0 \Leftrightarrow x > \frac{3}{2}\] nên không xảy ra \[f\left( x \right) < 0\] với mọi \(x \in \mathbb{R}\)

d) Đúng: Với mọi giá trị của \(m\) thì \(f\left( x \right) = 0\) đều có nghiệm.

Nếu \(m = 2\) thì \[f\left( x \right) =  - 2x + 3\] nên \(f\left( x \right) = 0 \Leftrightarrow x = \frac{3}{2}\).

Nếu \(m \ne 2\) thì \(\Delta ' = {\left( {m - 1} \right)^2} - 3\left( {m - 2} \right) = {\left( {m - \frac{5}{2}} \right)^2} + \frac{3}{4} > 0,\,\,\forall m \in \mathbb{R}\).

Vậy với mọi giá trị của \(m\) thì \(f\left( x \right) = 0\) đều có nghiệm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\overrightarrow n = \left( {1; - 2} \right)\]                     
B. \[\overrightarrow n = \left( {2;1} \right)\]            
C. \[\overrightarrow n = \left( { - 2;3} \right)\]        
D. \[\overrightarrow n = \left( {1;3} \right)\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Từ \(A\) lập được 25 số có hai chữ số.
Đúng
Sai
b) Từ \(A\) lập được 125 số có ba chữ số khác nhau.
Đúng
Sai
c) Từ \(A\) lập được 24 số chẵn có ba chữ số khác nhau.
Đúng
Sai
d) Từ \(A\) lập được 101 số lẻ có ba chữ số khác nhau.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP