Câu hỏi:

18/12/2025 23 Lưu

Cho hình vuông \(ABCD\) có tâm \(O\)(\(O\) là giao điểm của hai đường chéo), cạnh hình vuông bằng \(2a\), gọi \(I\) là trung điểm đoạn \(OB\), \(M\)là một điểm bất kì trong mặt phẳng. Khi đó:

a) Độ dài \(\overrightarrow {MA} - \overrightarrow {MB} - \overrightarrow {MC} + \overrightarrow {MD} \) bằng \(4a\).

Đúng
Sai

b) \(\left| {\overrightarrow {AB} - \overrightarrow {OC} + \overrightarrow {OD} } \right| = 0\).

Đúng
Sai

c) \(\overrightarrow {AB} + \overrightarrow {OC} = 2\overrightarrow {AI} \).

Đúng
Sai
d) \(\overrightarrow {AC} \) cùng phương với \(\overrightarrow {BD} \).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình vuông \(ABCD\) có tâm \(O\)(\(O\) là giao điểm của hai đường chéo), cạnh hình vuông bằng (ảnh 1)

a) \(\overrightarrow {MA} - \overrightarrow {MB} - \overrightarrow {MC} + \overrightarrow {MD} \)\( = \left( {\overrightarrow {MA} - \overrightarrow {MB} } \right) + \left( {\overrightarrow {MD} - \overrightarrow {MC} } \right)\)\( = \overrightarrow {BA} + \overrightarrow {CD} \)\( = 2\overrightarrow {BA} \).

Suy ra \(\left| {\overrightarrow {MA} - \overrightarrow {MB} - \overrightarrow {MC} + \overrightarrow {MD} } \right| = 2\left| {\overrightarrow {BA} } \right| = 4a\).

b) \(\left| {\overrightarrow {AB} - \overrightarrow {OC} + \overrightarrow {OD} } \right| = \left| {\overrightarrow {AB} + \overrightarrow {OD} - \overrightarrow {OC} } \right|\)\( = \left| {\overrightarrow {AB} + \overrightarrow {CD} } \right| = \left| {\overrightarrow 0 } \right| = 0\).

c) \(\overrightarrow {AB} + \overrightarrow {OC} = \overrightarrow {AB} + \overrightarrow {AO} = 2\overrightarrow {AI} \).

d) \(\overrightarrow {AC} \) không cùng phương với \(\overrightarrow {BD} \).

Đáp án: a) Đúng;     b) Đúng;    c) Đúng;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\overrightarrow {{v_2}} \) ngược hướng với \(\overrightarrow {{v_1}} \)\(\frac{{\left| {\overrightarrow {{v_2}} } \right|}}{{\left| {\overrightarrow {{v_1}} } \right|}} = \frac{{100}}{{60}} = \frac{5}{3}\).

Do đó \(\overrightarrow {{v_2}} = - \frac{5}{3}\overrightarrow {{v_1}} \).

Vậy \(a = - \frac{5}{3} \approx - 1,7\).

Lời giải

Do \(B\) là trọng tâm của tam giác \(ACD\) nên \(\left\{ \begin{array}{l}\frac{{1 - 1 + a}}{3} = - 2\\\frac{{1 - 5 + b}}{3} = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - 6\\b = 13\end{array} \right. \Rightarrow D\left( { - 6;13} \right)\).

Vậy \(a + 2b = - 6 + 2 \cdot 13 = 20\).

Câu 3

a) \(\overrightarrow {AB} \cdot \overrightarrow {BC} = - 18\).

Đúng
Sai

b) \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \frac{3}{{\sqrt {13} }}\).

Đúng
Sai
c) \(ABCD\) là hình bình hành khi \(D\left( {4; - 5} \right)\).
Đúng
Sai
d) Tọa độ trực tâm \(H\) của tam giác \(ABC\)\(H\left( {\frac{{13}}{2};1} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(I\left( {4;4} \right)\).
B. \(I\left( {2;2} \right)\). 
C. \(I\left( {0; - 10} \right)\).     
D. \(I\left( {0;10} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow a \cdot \overrightarrow b = 1\).                                    
B. \(\overrightarrow a \cdot \overrightarrow b = 12\).  
C. \(\overrightarrow a \cdot \overrightarrow b = 7\).      
D. \(\overrightarrow a \cdot \overrightarrow b = 26\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP