Cho hình vuông \(ABCD\) có tâm \(O\)(\(O\) là giao điểm của hai đường chéo), cạnh hình vuông bằng \(2a\), gọi \(I\) là trung điểm đoạn \(OB\), \(M\)là một điểm bất kì trong mặt phẳng. Khi đó:
Cho hình vuông \(ABCD\) có tâm \(O\)(\(O\) là giao điểm của hai đường chéo), cạnh hình vuông bằng \(2a\), gọi \(I\) là trung điểm đoạn \(OB\), \(M\)là một điểm bất kì trong mặt phẳng. Khi đó:
a) Độ dài \(\overrightarrow {MA} - \overrightarrow {MB} - \overrightarrow {MC} + \overrightarrow {MD} \) bằng \(4a\).
b) \(\left| {\overrightarrow {AB} - \overrightarrow {OC} + \overrightarrow {OD} } \right| = 0\).
c) \(\overrightarrow {AB} + \overrightarrow {OC} = 2\overrightarrow {AI} \).
Quảng cáo
Trả lời:

a) \(\overrightarrow {MA} - \overrightarrow {MB} - \overrightarrow {MC} + \overrightarrow {MD} \)\( = \left( {\overrightarrow {MA} - \overrightarrow {MB} } \right) + \left( {\overrightarrow {MD} - \overrightarrow {MC} } \right)\)\( = \overrightarrow {BA} + \overrightarrow {CD} \)\( = 2\overrightarrow {BA} \).
Suy ra \(\left| {\overrightarrow {MA} - \overrightarrow {MB} - \overrightarrow {MC} + \overrightarrow {MD} } \right| = 2\left| {\overrightarrow {BA} } \right| = 4a\).
b) \(\left| {\overrightarrow {AB} - \overrightarrow {OC} + \overrightarrow {OD} } \right| = \left| {\overrightarrow {AB} + \overrightarrow {OD} - \overrightarrow {OC} } \right|\)\( = \left| {\overrightarrow {AB} + \overrightarrow {CD} } \right| = \left| {\overrightarrow 0 } \right| = 0\).
c) \(\overrightarrow {AB} + \overrightarrow {OC} = \overrightarrow {AB} + \overrightarrow {AO} = 2\overrightarrow {AI} \).
d) \(\overrightarrow {AC} \) không cùng phương với \(\overrightarrow {BD} \).
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\overrightarrow {{v_2}} \) ngược hướng với \(\overrightarrow {{v_1}} \) và \(\frac{{\left| {\overrightarrow {{v_2}} } \right|}}{{\left| {\overrightarrow {{v_1}} } \right|}} = \frac{{100}}{{60}} = \frac{5}{3}\).
Do đó \(\overrightarrow {{v_2}} = - \frac{5}{3}\overrightarrow {{v_1}} \).
Vậy \(a = - \frac{5}{3} \approx - 1,7\).
Lời giải
Do \(B\) là trọng tâm của tam giác \(ACD\) nên \(\left\{ \begin{array}{l}\frac{{1 - 1 + a}}{3} = - 2\\\frac{{1 - 5 + b}}{3} = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - 6\\b = 13\end{array} \right. \Rightarrow D\left( { - 6;13} \right)\).
Vậy \(a + 2b = - 6 + 2 \cdot 13 = 20\).
Câu 3
a) \(\overrightarrow {AB} \cdot \overrightarrow {BC} = - 18\).
b) \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \frac{3}{{\sqrt {13} }}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
