Câu hỏi:

18/12/2025 27 Lưu

Trong mặt phẳng với hệ trục tọa độ \(Oxy\), cho tam giác \(ABC\) với \(A\left( {1;1} \right),B\left( { - 2;3} \right),C\left( { - 1; - 5} \right)\). Biết \(B\) là trọng tâm của tam giác \(ACD\) với \(D\left( {a;b} \right)\). Giá trị của \(a + 2b\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

20

Do \(B\) là trọng tâm của tam giác \(ACD\) nên \(\left\{ \begin{array}{l}\frac{{1 - 1 + a}}{3} = - 2\\\frac{{1 - 5 + b}}{3} = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - 6\\b = 13\end{array} \right. \Rightarrow D\left( { - 6;13} \right)\).

Vậy \(a + 2b = - 6 + 2 \cdot 13 = 20\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\overrightarrow {{v_2}} \) ngược hướng với \(\overrightarrow {{v_1}} \)\(\frac{{\left| {\overrightarrow {{v_2}} } \right|}}{{\left| {\overrightarrow {{v_1}} } \right|}} = \frac{{100}}{{60}} = \frac{5}{3}\).

Do đó \(\overrightarrow {{v_2}} = - \frac{5}{3}\overrightarrow {{v_1}} \).

Vậy \(a = - \frac{5}{3} \approx - 1,7\).

Lời giải

Cho tam giác \(ABC\) vuông tại \(A\) có góc B =60 độ (ảnh 1)

Tam giác \(ABC\) vuông tại A, có \(AB = \frac{{AC}}{{\tan B}} = \frac{{2,5}}{{\tan 60^\circ }} = \frac{{5\sqrt 3 }}{6}\).

Suy ra \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{\left( {\frac{{5\sqrt 3 }}{6}} \right)}^2} + 2,{5^2}} = \frac{{5\sqrt 3 }}{3}\).

Ta có \(P = \overrightarrow {AM} \cdot \overrightarrow {BM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) \cdot \frac{1}{2}\overrightarrow {BC} = \frac{1}{4}\left( {\overrightarrow {AB} \cdot \overrightarrow {BC} + \overrightarrow {AC} \cdot \overrightarrow {BC} } \right)\)

\[ = \frac{1}{4}\left( { - \left| {\overrightarrow {BA} } \right|\left| {\overrightarrow {BC} } \right|\cos B + \left| {\overrightarrow {AC} } \right| \cdot \left| {\overrightarrow {BC} } \right| \cdot \cos C} \right)\]\[ = \frac{1}{4}\left( { - \frac{{5\sqrt 3 }}{6} \cdot \frac{{5\sqrt 3 }}{3} \cdot \cos 60^\circ + 2,5 \cdot \frac{{5\sqrt 3 }}{3} \cdot \cos 30^\circ } \right) = \frac{{25}}{{24}} \approx 1,04\].

Câu 3

a) \(\overrightarrow {AB} \cdot \overrightarrow {BC} = - 18\).

Đúng
Sai

b) \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \frac{3}{{\sqrt {13} }}\).

Đúng
Sai
c) \(ABCD\) là hình bình hành khi \(D\left( {4; - 5} \right)\).
Đúng
Sai
d) Tọa độ trực tâm \(H\) của tam giác \(ABC\)\(H\left( {\frac{{13}}{2};1} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Độ dài \(\overrightarrow {MA} - \overrightarrow {MB} - \overrightarrow {MC} + \overrightarrow {MD} \) bằng \(4a\).

Đúng
Sai

b) \(\left| {\overrightarrow {AB} - \overrightarrow {OC} + \overrightarrow {OD} } \right| = 0\).

Đúng
Sai

c) \(\overrightarrow {AB} + \overrightarrow {OC} = 2\overrightarrow {AI} \).

Đúng
Sai
d) \(\overrightarrow {AC} \) cùng phương với \(\overrightarrow {BD} \).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(I\left( {4;4} \right)\).
B. \(I\left( {2;2} \right)\). 
C. \(I\left( {0; - 10} \right)\).     
D. \(I\left( {0;10} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow a \cdot \overrightarrow b = 1\).                                    
B. \(\overrightarrow a \cdot \overrightarrow b = 12\).  
C. \(\overrightarrow a \cdot \overrightarrow b = 7\).      
D. \(\overrightarrow a \cdot \overrightarrow b = 26\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP