Câu hỏi:

21/12/2025 2 Lưu

Một nhóm gồm \(4\) bạn nam và \(4\) bạn nữ mua vé xem ca nhạc với \(8\) ghế ngồi liên tiếp nhau theo một hàng ngang. Có bao nhiêu cách xếp chỗ ngồi sao cho các bạn nam và các bạn nữ ngồi xen kẽ nhau?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta đánh số các ghế ngồi theo thứ tự từ trái sang phải lần lượt là \(1,2,3,4,5,6,7,8\).

Có hai phương án để các bạn nam và các bạn nữ ngồi xen kẽ nhau là:

Phương án 1: các bạn nam ngồi các ghế \(1,3,5,7\) và các bạn nữ ngồi các ghế \(2,4,6,8\).

Có \(4!\) cách xếp \(4\) bạn nam vào các ghế \(1,3,5,7\).

Có \(4!\) cách xếp \(4\) bạn nữ vào các ghế \(2,4,6,8\).

Suy ra có \(4!.4! = 576\) cách xếp.

Phương án 2: các bạn nữ ngồi các ghế \(1,3,5,7\) và các bạn nam ngồi các ghế \(2,4,6,8\).

Có \(4!\) cách xếp \(4\) bạn nữ vào các ghế \(1,3,5,7\).

Có \(4!\) cách xếp \(4\) bạn nam vào các ghế \(2,4,6,8\).

Suy ra có \(4!.4! = 576\) cách xếp.

Vậy có \(576 + 576 = 1152\) cách xếp chỗ ngồi sao cho các bạn nam và các bạn nữ ngồi xen kẽ nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(f\left( x \right) < 0,\forall x \in \mathbb{R}\).                                            

B. \(f\left( x \right) = 0,\forall x \in \mathbb{R}\).

C. \(f\left( x \right) \le 0,\forall x \in \mathbb{R}\).                                           

D. \(f\left( x \right) > 0,\forall x \in \mathbb{R}\).

Lời giải

Đáp án đúng là D

Từ bảng xét dấu ta thấy \(f\left( x \right) > 0,\forall x \in \mathbb{R}\).

Câu 2

A. \[{x^2} + {y^2} - 2x - 8y + 20 = 0\].              

B. \[4{x^2} + {y^2} - 10x - 6y - 2 = 0\].

C. \[{x^2} + {y^2} - 4x + 6y - 12 = 0\].              

D. \[{x^2} + 2{y^2} - 4x - 8y + 1 = 0\].

Lời giải

Đáp án đúng là C

Phương án A: \[{x^2} + {y^2} - 2x - 8y + 20 = 0 \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 4} \right)^2} =  - 3\] (loại).

Phương án B và D loại vì hệ số của \({x^2}\) và \({y^2}\) không bằng nhau.

Phương án C: \[{x^2} + {y^2} - 4x + 6y - 12 = 0 \Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 25\] (nhận).

Câu 3

A. \(S = \left\{ 1 \right\}\).                                   

B. \(S = \left\{ { - 1} \right\}\).

C. \(S = \left\{ 0 \right\}\).                        

D. \(S = \emptyset \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(D = \left[ {1; + \infty } \right)\).                  

B. \(D = \left( {1; + \infty } \right)\).  

C. \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).         

D. \(D = \left( { - \infty ;\,1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\overrightarrow n  = \left( {1;2} \right)\). 

B. \(\overrightarrow n  = \left( {4; - 2} \right)\).                                       

C. \(\overrightarrow n  = \left( {2;1} \right)\).           

D. \(\overrightarrow n  = \left( { - 2; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 8.                               

B. 10.                           

C. 2.                             

D. 12.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[15\].                         

B. \[8\].                         

C. \[8!\].                       

D. \[7!\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP