Câu hỏi:

21/12/2025 75 Lưu

Bộ bài tú lơ khơ có 52 quân bài. Rút ngẫu nhiên ra 4 quân bài. Hãy xác định tính đúng sai của các mệnh đề sau:

a) Xác suất của biến cố \(A\): “Rút ra được tứ quý Át” là \(\frac{1}{{52}}\)

b) Xác suất của biến cố \(B\): “Rút ra được hai quân Át, hai quân \(K\)” là \[\frac{{36}}{{270725}}\]

c) Xác suất của biến cố \(C\): “Rút ra được ít nhất một quân Át” là \(\frac{{38916}}{{54145}}\)

d) Xác suất của biến cố \(D\): “Rút ra được 4 quân trong đó có đúng 2 quân ở cùng một tứ quý và hai quân còn lại ở hai tứ quý khác nhau” là \[\frac{{82368}}{{270725}}\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai: Ta có số cách chọn ngẫu nhiên 4 quân bài là: \(C_{52}^4 = 270725\).

Suy ra số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = 270725\).

Vì bộ bài chỉ có 1 tứ quý Át nên số phần tử của biến cố \[A\] là: \(n\left( A \right) = 1\).

Vậy xác suất của biến cố \(A\) là \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{1}{{270725}}\].

b) Đúng: Ta có số cách chọn ngẫu nhiên 4 quân bài là: \(C_{52}^4 = 270725\).

Suy ra số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = 270725\).

Có \(C_4^2\) cách rút được hai quân Át, Có \(C_4^2\) cách rút được hai quân \(K\) nên số phần tử của biến cố \[B\] là: \(n\left( B \right) = C_4^2.C_4^2 = 36\).

Vậy xác suất của biến cố \(B\) là \[P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{{36}}{{270725}}\].

c) Sai: Ta có số cách chọn ngẫu nhiên 4 quân bài là: \(C_{52}^4 = 270725\).

Suy ra số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = 270725\).

Biến cố \(\overline C \): “ Rút không được quân Át nào”.

Có \(C_{48}^4\) cách rút bốn quân không cố quân Át nào nên số phần tử của biến cố \[\overline C \] là: \(n\left( {\overline C } \right) = C_{48}^4 = 194580\).

Vậy xác suất của biến cố \(C\) là \[P\left( C \right) = 1 - P\left( {\overline C } \right) = 1 - \frac{{n\left( {\overline C } \right)}}{{n\left( \Omega  \right)}} = 1 - \frac{{194580}}{{270725}} = 1 - \frac{{38916}}{{54145}} = \frac{{15229}}{{54145}}\].

d) Đúng: Ta có số cách chọn ngẫu nhiên 4 quân bài là: \(C_{52}^4 = 270725\).

Suy ra số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = 270725\).

Có \(C_{13}^1\) cách chọn ra 1 tứ quý. Ứng với tứ quý này có \(C_4^2\) cách chọn ra 2 quân bài.

Có \(C_{12}^2\) cách chọn ra 2 tứ quý từ 12 tứ quý còn lại. Mỗi tứ quý này có \(C_4^1\) cách chọn ra 1 quân bài nên số phần tử của biến cố \[D\] là: \(n\left( D \right) = C_{13}^1.C_4^2.C_{12}^2.{\left( {C_4^1} \right)^2} = 82368\).

Vậy xác suất của biến cố \(D\) là \[P\left( D \right) = P\left( D \right) = \frac{{n\left( D \right)}}{{n\left( \Omega  \right)}} = \frac{{82368}}{{270725}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng: Theo qui tắc nhân có \[5.5 = 25\] số có hai chữ số.

b) Sai: Gọi số có 3 chữ số khác nhau là \(\overline {abc} \).

Chọn \(a\) có 5 cách.

Chọn \(b\) có 4 cách.

Chọn \(c\) có 3 cách.

Suy ra có \[5.4.3 = 60\] số có ba chữ số khác nhau.

c) Đúng: Gọi số chẵn có ba chữ số khác nhau là \(\overline {abc} \).

Chọn \(c\) có 2 cách.

Chọn \(a\) có 4 cách.

Chọn \(b\) có 3 cách.

Suy ra có \[2.4.3 = 24\] số chẵn có ba chữ số khác nhau.

d) Sai: Gọi số lẻ có ba chữ số khác nhau là \(\overline {abc} \).

Chọn \(c\) có 3 cách.

Chọn \(a\) có 4 cách.

Chọn \(b\) có 3 cách.

Suy ra có \[3.4.3 = 36\] số lẻ có ba chữ số khác nhau.

Lời giải

Tổng trọng lượng cá thu được sau một vụ là: \(T\left( n \right) = n\left( {360 - 10n} \right) = 360n - 10{n^2}\).

Đây là một tam thức bậc hai với ẩn là \(n\) có hệ số \(a =  - 10 < 0\) và \(b = 360\) \( \Rightarrow \frac{{ - b}}{{2a}} = \frac{{ - 360}}{{2.\left( { - 10} \right)}} = 18\)

Khi đó \(T\left( {18} \right) = 3240\).

Vậy người nuôi cần thả \(18\) con cá trên một đơn vị diện tích để đạt tổng trọng lượng cá lớn nhất

là \(3240\) (đơn vị khối lượng).

Câu 4

A. \[2256\].                     

B. \[2304\].                   

C. \[1128\].                  

D. \[96\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP