Bộ 10 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 4
30 người thi tuần này 4.6 416 lượt thi 22 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài tập cuối chương 7 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 6. Ba đường conic (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Phương trình đường trò (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Phương trình đường thẳn (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Biểu thức tọa độ của các phép toán vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Tọa độ của vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
Danh sách câu hỏi:
Câu 1
A. \(I\left( {0;1} \right)\).
Lời giải
Đáp án đúng là B
Hoành độ đỉnh của \(\left( P \right):y = 3{x^2} - 2x + 1\) là \(x = - \frac{b}{{2a}} = \frac{1}{3}\)\( \Rightarrow y = 3{\left( {\frac{1}{3}} \right)^2} - 2.\frac{1}{3} + 1 = \frac{2}{3}\).
Vậy \(I\left( {\frac{1}{3};\,\frac{2}{3}} \right)\).
Câu 2
A. \(x \in \left( { - 4;1} \right)\).
B. \(x \in \left( { - \infty ; - 4} \right) \cup \left( {1; + \infty } \right)\).
Lời giải
Đáp án đúng là B
Từ bảng xét dấu\(y = h\left( x \right) = ax{}^2 + bx + c\)

Suy ra \(h\left( x \right) > 0\) khi \(x \in \left( { - \infty ; - 4} \right) \cup \left( {1; + \infty } \right)\).
Câu 3
A. \(0\).
B. \(1\).
B. \(2\).
D. \(3\).
Lời giải
Đáp án đúng là B
\[\sqrt {x - 1} = x - 3 \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\x - 1 = {\left( {x - 3} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\{x^2} - 7x + 10 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\\left[ \begin{array}{l}x = 2\\x = 5\end{array} \right.\end{array} \right. \Rightarrow x = 5\].
Đối chiếu điều kiện suy ra phương trình có một nghiệm \[x = 5\].
Câu 4
A. \({90^0}\).
B. \({45^0}\).
C. \({135^0}\).
D. \({60^0}\).
Lời giải
Đáp án đúng là B
Ta có véctơ pháp tuyến của \(\Delta \) là \(\overrightarrow n = \left( {1; - 1} \right)\), véc tơ pháp tuyến \(\Delta '\) là \(\overrightarrow {n'} = \left( {1;0} \right)\)
\(\cos \left( {\Delta ,\Delta '} \right) = \left| {\cos \left( {\overrightarrow n ,\overrightarrow {n'} } \right)} \right| = \frac{{\sqrt 2 }}{2} \Rightarrow \left( {\Delta ,\Delta '} \right) = {45^0}\).
Câu 5
A. \[{x^2} + {y^2} + 8x + 6y - 12 = 0\].
B. \[{x^2} + {y^2} - 8x - 6y + 12 = 0\].
Lời giải
Đáp án đúng là B
Ta có tâm \[I\] là trung điểm của đoạn thẳng \[AB\] và bán kính \[R = \frac{{AB}}{2}\].
Suy ra \[\left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_B}}}{2}\\{y_I} = \frac{{{y_A} + {y_B}}}{2}\end{array} \right.\]\[ \Rightarrow \left\{ \begin{array}{l}{x_I} = \frac{{1 + 7}}{2} = 4\\{y_I} = \frac{{1 + 5}}{2} = 3\end{array} \right.\]\[ \Rightarrow I = \left( {4;\,3} \right)\].
\[R = \frac{{AB}}{2} = \frac{{\sqrt {{{\left( {7 - 1} \right)}^2} + {{\left( {5 - 1} \right)}^2}} }}{2} = \sqrt {13} \].
Phương trình đường tròn đường kính \[AB\] là: \[{\left( {x - 4} \right)^2} + {\left( {y - 3} \right)^2} = {\left( {\sqrt {13} } \right)^2}\]
\[ \Leftrightarrow {x^2} + {y^2} - 8x - 6y + 12 = 0\]
Kết luận phương trình đường tròn đường kính \[AB\] là \[{x^2} + {y^2} - 8x - 6y + 12 = 0\].
Câu 6
A. \(\frac{{{x^2}}}{5} - \frac{{{y^2}}}{4} = - 1\).
B. \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\).
C. \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = - 1\).
D. \(\frac{{{x^2}}}{8} - \frac{{{y^2}}}{6} = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Từ thành phố \[A\] đến thành phố \[B\] có \[3\] con đường, từ thành phố \[A\] đến thành phố \[C\] có \[2\] con đường, từ thành phố \[B\] đến thành phố \[D\] có \[2\] con đường, từ thành phố \[C\] đến thành phố \[D\] có \[3\] con đường, không có con đường nào nối từ thành phố \[C\] đến thành phố \[B\]. Hỏi có bao nhiêu con đường đi từ thành phố \[A\] đến thành phố \[D\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. \[2256\].
B. \[2304\].
C. \[1128\].
D. \[96\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. \[1.\].
B. \(2.\).
C. \[0.\].
D. \[3.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. \[6\].
B. \[5\].
C. \[10\].
D. \[11\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

