20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Đúng sai - trả lời ngắn) có đáp án
13 người thi tuần này 4.6 13 lượt thi 20 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài tập cuối chương 7 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 6. Ba đường conic (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Phương trình đường trò (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Phương trình đường thẳn (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Biểu thức tọa độ của các phép toán vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Tọa độ của vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
Danh sách câu hỏi:
Câu 1
Lời giải
\(d\left( {M,\Delta } \right) = \left| {{x_0}} \right|\). Chọn A.
Câu 2
Lời giải
Ta có \(d\left( {A,\Delta } \right) = \frac{{\left| {5 \cdot 1 - 12 \cdot 1 - 6} \right|}}{{\sqrt {{5^2} + {{\left( { - 12} \right)}^2}} }} = 1\). Chọn D.
Câu 3
Lời giải
Phương trình đường thẳng \(BC\) là \(\frac{x}{4} + \frac{y}{3} = 1 \Leftrightarrow 3x + 4y - 12 = 0\).
Chiều cao của tam giác kẻ từ đỉnh \(A\) bằng \(d\left( {A,BC} \right) = \frac{{\left| {3 \cdot 1 + 4 \cdot 2 - 12} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{1}{5}\). Chọn C.
Câu 4
A. Vuông góc.
B. Trùng nhau.
Lời giải
Đường thẳng \({d_1}\) có vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( { - 3;1} \right)\) nên \(\overrightarrow {{n_1}} = \left( {1;3} \right)\) là vectơ pháp tuyến của đường thẳng \({d_1}\).
Đường thẳng \({d_2}\) có vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {1;3} \right)\).
Vì \(\overrightarrow {{n_1}} \) cùng phương với \(\overrightarrow {{n_2}} \) nên hai đường thẳng này song song hoặc trùng nhau.
Lại có \(A\left( {1;3} \right)\) thuộc \({d_1}\) và thuộc \({d_2}\) nên hai đường thẳng này trùng nhau. Chọn B.
Câu 5
Ta có \(\overrightarrow {{n_1}} = \left( {2; - 1} \right),\overrightarrow {{n_2}} = \left( {3;1} \right)\) lần lượt là vectơ pháp tuyến của đường thẳng \({d_1},{d_2}\).
Gọi \(\varphi \) là góc giữa hai đường thẳng \({d_1},{d_2}\).
Khi đó \[\cos \varphi = \frac{{\left| {\overrightarrow {{n_1}} \cdot \overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right| \cdot \left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {2 \cdot 3 + \left( { - 1} \right) \cdot 1} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} \cdot \sqrt {{3^2} + {1^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \varphi = 45^\circ \]. Chọn A.
Lời giải
Ta có \(\overrightarrow {{n_1}} = \left( {2; - 1} \right),\overrightarrow {{n_2}} = \left( {3;1} \right)\) lần lượt là vectơ pháp tuyến của đường thẳng \({d_1},{d_2}\).
Gọi \(\varphi \) là góc giữa hai đường thẳng \({d_1},{d_2}\).
Khi đó \[\cos \varphi = \frac{{\left| {\overrightarrow {{n_1}} \cdot \overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right| \cdot \left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {2 \cdot 3 + \left( { - 1} \right) \cdot 1} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} \cdot \sqrt {{3^2} + {1^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \varphi = 45^\circ \]. Chọn A.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. Vuông góc.
B. Trùng nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. Vuông góc.
B. Trùng nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
a) Đường thẳng \(d\) có một vectơ pháp tuyến \(\overrightarrow n = \left( {3;4} \right)\).
b) Đường thẳng \(AB\) có một vectơ chỉ phương là \(\overrightarrow {AB} = \left( {3;1} \right)\).
c) Điểm \(A\left( {1;1} \right)\) nằm trên đường thẳng \(d:3x - 4y + 2 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
a) Khoảng cách từ điểm \(N\) đến đường thẳng \({\Delta _1}\) bằng \(\frac{4}{{\sqrt 5 }}\).
b) Cosin góc tạo bởi hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) bằng \(\frac{3}{{\sqrt {10} }}\).
c) Đường thẳng \({\Delta _2}\) tạo với hai trục tọa độ một tam giác có diện tích bằng \(\frac{9}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
a) Một vectơ chỉ phương của đường thẳng \({\Delta _3}\) là \(\overrightarrow {{u_3}} = \left( {2;2} \right)\).
b) Một vectơ pháp tuyến của đường thẳng \({\Delta _1}\) có tọa độ là \(\left( {2;5} \right)\).
c) Hai đường thẳng \({\Delta _1},{\Delta _2}\) cắt nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
a) Khoảng cách từ điểm \(O\left( {0;0} \right)\) đến đường thẳng \({\Delta _2}\) bằng 1.
b) Hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) vuông góc với nhau.
c) Một tín hiệu âm thanh phát đi từ một vị trí và được ba thiết bị ghi tín hiệu đặt tại ba vị trí \(O\left( {0;0} \right),A\left( {1;0} \right)\) và \(M = {\Delta _1} \cap {\Delta _2}\) nhận được cùng một thời điểm. Vị trí phát tín hiệu âm thanh là \(I\left( {\frac{1}{2}; - \frac{3}{2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 15
a) Một vectơ pháp tuyến của đường thẳng \({d_1}\) là \(\overrightarrow n = \left( {2; - 5} \right)\).
b) Phương trình tổng quát của đường thẳng \({d_1}\) là \(2x - 5y - 2 = 0\).
c) \({d_1}\) cắt \({d_2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.