Câu hỏi:

25/01/2026 9 Lưu

Tính góc giữa hai đường thẳng \({d_1}:2x - y - 3 = 0\) và \({d_2}:3x + y + 2 = 0\).

A. \(45^\circ \).          
B. \(60^\circ \).          
C. \(30^\circ \).          
D. \(90^\circ \).

Ta có \(\overrightarrow {{n_1}} = \left( {2; - 1} \right),\overrightarrow {{n_2}} = \left( {3;1} \right)\) lần lượt là vectơ pháp tuyến của đường thẳng \({d_1},{d_2}\).

Gọi \(\varphi \) là góc giữa hai đường thẳng \({d_1},{d_2}\).

Khi đó \[\cos \varphi = \frac{{\left| {\overrightarrow {{n_1}} \cdot \overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right| \cdot \left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {2 \cdot 3 + \left( { - 1} \right) \cdot 1} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} \cdot \sqrt {{3^2} + {1^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \varphi = 45^\circ \]. Chọn A.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\overrightarrow {{n_1}} = \left( {2; - 1} \right),\overrightarrow {{n_2}} = \left( {3;1} \right)\) lần lượt là vectơ pháp tuyến của đường thẳng \({d_1},{d_2}\).

Gọi \(\varphi \) là góc giữa hai đường thẳng \({d_1},{d_2}\).

Khi đó \[\cos \varphi = \frac{{\left| {\overrightarrow {{n_1}} \cdot \overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right| \cdot \left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {2 \cdot 3 + \left( { - 1} \right) \cdot 1} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} \cdot \sqrt {{3^2} + {1^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \varphi = 45^\circ \]. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\overrightarrow n = \left( {1; - \sqrt 3 } \right)\)\(\overrightarrow {n'} = \left( {1;\sqrt 3 } \right)\) là vectơ pháp tuyến của \(\Delta \)\(\Delta '\).

Gọi \(\varphi \) là góc giữa hai đường thẳng \(\Delta \)\(\Delta '\) nên ta có

\(\cos \varphi = \frac{{\left| {\overrightarrow n \cdot \overrightarrow {n'} } \right|}}{{\left| {\overrightarrow n } \right| \cdot \left| {\overrightarrow {n'} } \right|}} = \frac{{\left| {1 \cdot 1 + \left( { - \sqrt 3 } \right) \cdot \sqrt 3 } \right|}}{{\sqrt {{1^2} + {{\left( { - \sqrt 3 } \right)}^2}} \cdot \sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2}} }}\)\( = \frac{1}{2}\) \( \Rightarrow \varphi = 60^\circ \).

Lời giải

Hai đường đi của hai tàu có cặp vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( { - 33;25} \right),\overrightarrow {{u_2}} = \left( { - 30; - 40} \right)\).

Gọi \(\varphi \) là góc giữa hai đường đi của hai tàu.

Ta có \(\cos \varphi = \frac{{\left| {\overrightarrow {{u_1}} \cdot \overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right| \cdot \left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| { - 33 \cdot \left( { - 30} \right) + 25 \cdot \left( { - 40} \right)} \right|}}{{\sqrt {{{\left( { - 33} \right)}^2} + {{25}^2}} \cdot \sqrt {{{\left( { - 30} \right)}^2} + {{\left( { - 40} \right)}^2}} }} \approx 0,00483 \Rightarrow \varphi \approx 89,7^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{3\sqrt {10} }}{{10}}\).     
B. \(\frac{{ - 3\sqrt {10} }}{{10}}\).  
C. \(\frac{{ - \sqrt {10} }}{{10}}\).         
D. \(\frac{{\sqrt {10} }}{{10}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP