Câu hỏi:

25/01/2026 8 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho ba đường thẳng \({\Delta _1}:2x - 5y + 1 = 0\), \({\Delta _2}:x + 3y - 5 = 0\) và \({\Delta _3}:\left\{ \begin{array}{l}x = 2 + 2t\\y = 3t\end{array} \right.\).

a) Một vectơ chỉ phương của đường thẳng \({\Delta _3}\) là \(\overrightarrow {{u_3}}  = \left( {2;2} \right)\).

Đúng
Sai

b) Một vectơ pháp tuyến của đường thẳng \({\Delta _1}\) có tọa độ là \(\left( {2;5} \right)\).

Đúng
Sai

c) Hai đường thẳng \({\Delta _1},{\Delta _2}\) cắt nhau.

Đúng
Sai
d) Tọa độ giao điểm của hai đường thẳng \({\Delta _1},{\Delta _2}\) là \(\left( { - 2; - 1} \right)\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Một vectơ chỉ phương của đường thẳng \({\Delta _3}\)\(\overrightarrow {{u_3}} = \left( {2;3} \right)\).

b) Một vectơ pháp tuyến của đường thẳng \({\Delta _1}\) có tọa độ là \(\left( {2; - 5} \right)\).

c) Đường thẳng \({\Delta _1},{\Delta _2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {2; - 5} \right);\overrightarrow {{n_2}} = \left( {1;3} \right)\).

Hai vectơ này không cùng phương nên hai đường thẳng này cắt nhau.

d) Tọa độ giao điểm của hai đường thẳng \({\Delta _1},{\Delta _2}\) là nghiệm của hệ \(\left\{ \begin{array}{l}2x - 5y + 1 = 0\\x + 3y - 5 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 1\end{array} \right.\).

Vậy tọa độ giao điểm của hai đường thẳng \({\Delta _1},{\Delta _2}\)\(\left( {2;1} \right)\).

Đáp án: a) Sai;    b) Sai;   c) Đúng;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\overrightarrow n = \left( {1; - \sqrt 3 } \right)\)\(\overrightarrow {n'} = \left( {1;\sqrt 3 } \right)\) là vectơ pháp tuyến của \(\Delta \)\(\Delta '\).

Gọi \(\varphi \) là góc giữa hai đường thẳng \(\Delta \)\(\Delta '\) nên ta có

\(\cos \varphi = \frac{{\left| {\overrightarrow n \cdot \overrightarrow {n'} } \right|}}{{\left| {\overrightarrow n } \right| \cdot \left| {\overrightarrow {n'} } \right|}} = \frac{{\left| {1 \cdot 1 + \left( { - \sqrt 3 } \right) \cdot \sqrt 3 } \right|}}{{\sqrt {{1^2} + {{\left( { - \sqrt 3 } \right)}^2}} \cdot \sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2}} }}\)\( = \frac{1}{2}\) \( \Rightarrow \varphi = 60^\circ \).

Lời giải

Hai đường đi của hai tàu có cặp vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( { - 33;25} \right),\overrightarrow {{u_2}} = \left( { - 30; - 40} \right)\).

Gọi \(\varphi \) là góc giữa hai đường đi của hai tàu.

Ta có \(\cos \varphi = \frac{{\left| {\overrightarrow {{u_1}} \cdot \overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right| \cdot \left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| { - 33 \cdot \left( { - 30} \right) + 25 \cdot \left( { - 40} \right)} \right|}}{{\sqrt {{{\left( { - 33} \right)}^2} + {{25}^2}} \cdot \sqrt {{{\left( { - 30} \right)}^2} + {{\left( { - 40} \right)}^2}} }} \approx 0,00483 \Rightarrow \varphi \approx 89,7^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{3\sqrt {10} }}{{10}}\).     
B. \(\frac{{ - 3\sqrt {10} }}{{10}}\).  
C. \(\frac{{ - \sqrt {10} }}{{10}}\).         
D. \(\frac{{\sqrt {10} }}{{10}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP