Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(\Delta :ax + by + c = 0\left( {a;b;c \in \mathbb{N};a < 2} \right)\) vuông góc với đường thẳng \(d:3x - y + 4 = 0\) và \(\Delta \) cách \(A\left( {3;2} \right)\) một khoảng \(2\sqrt {10} \). Tính giá trị biểu thức \(T = 3a + b + 4c.\)
Quảng cáo
Trả lời:
Đáp án:
Đường thẳng \(\Delta \) vuông góc với đường thẳng \(d\) nên có dạng: \(x + 3y + c = 0\).
Lại có \(d\left( {A,\Delta } \right) = 2\sqrt {10} \) nên \(\frac{{\left| {3 + 3 \cdot 2 + c} \right|}}{{\sqrt {{1^2} + {3^2}} }} = 2\sqrt {10} \)\( \Leftrightarrow \left| {9 + c} \right| = 20\)\( \Leftrightarrow \left[ \begin{array}{l}9 + c = 20\\9 + c = - 20\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}c = 11\\c = - 29\end{array} \right.\).
Vì \(a;b;c \in \mathbb{N};a < 2\) nên \(x + 3y + 11 = 0\).
Do đó \(a = 1;b = 3;c = 11\). Vậy \(T = 3 \cdot 1 + 3 + 4 \cdot 11 = 50\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\overrightarrow n = \left( {1; - \sqrt 3 } \right)\) và \(\overrightarrow {n'} = \left( {1;\sqrt 3 } \right)\) là vectơ pháp tuyến của \(\Delta \) và \(\Delta '\).
Gọi \(\varphi \) là góc giữa hai đường thẳng \(\Delta \) và \(\Delta '\) nên ta có
\(\cos \varphi = \frac{{\left| {\overrightarrow n \cdot \overrightarrow {n'} } \right|}}{{\left| {\overrightarrow n } \right| \cdot \left| {\overrightarrow {n'} } \right|}} = \frac{{\left| {1 \cdot 1 + \left( { - \sqrt 3 } \right) \cdot \sqrt 3 } \right|}}{{\sqrt {{1^2} + {{\left( { - \sqrt 3 } \right)}^2}} \cdot \sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2}} }}\)\( = \frac{1}{2}\) \( \Rightarrow \varphi = 60^\circ \).
Lời giải
Hai đường đi của hai tàu có cặp vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( { - 33;25} \right),\overrightarrow {{u_2}} = \left( { - 30; - 40} \right)\).
Gọi \(\varphi \) là góc giữa hai đường đi của hai tàu.
Ta có \(\cos \varphi = \frac{{\left| {\overrightarrow {{u_1}} \cdot \overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right| \cdot \left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| { - 33 \cdot \left( { - 30} \right) + 25 \cdot \left( { - 40} \right)} \right|}}{{\sqrt {{{\left( { - 33} \right)}^2} + {{25}^2}} \cdot \sqrt {{{\left( { - 30} \right)}^2} + {{\left( { - 40} \right)}^2}} }} \approx 0,00483 \Rightarrow \varphi \approx 89,7^\circ \).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.