Cho đường thẳng \(d:3x + 4y - 1 = 0\). Đường thẳng \(\Delta :3x + by + c = 0\left( {c > - 5} \right)\) song song với \(d\) và cách \(A\left( {1;1} \right)\) một khoảng bằng 1. Tính \(b + c\).
Quảng cáo
Trả lời:
Đáp án:
Vì \(\Delta \) song song với \(d\) nên ta có \(\Delta :3x + 4y + c = 0\).
Lại có \(d\left( {A,\Delta } \right) = 1\) nên \(\frac{{\left| {3 \cdot 1 + 4 \cdot 1 + c} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 1\)\( \Leftrightarrow \left| {7 + c} \right| = 5\)\( \Leftrightarrow \left[ \begin{array}{l}7 + c = 5\\7 + c = - 5\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}c = - 2\\c = - 12\end{array} \right.\).
Mà \(c > - 5\) nên \(c = - 2\).
Vậy \(3x + 4y - 2 = 0\).
Suy ra \(b = 4;c = - 2\). Vậy \(b + c = 2\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\overrightarrow n = \left( {1; - \sqrt 3 } \right)\) và \(\overrightarrow {n'} = \left( {1;\sqrt 3 } \right)\) là vectơ pháp tuyến của \(\Delta \) và \(\Delta '\).
Gọi \(\varphi \) là góc giữa hai đường thẳng \(\Delta \) và \(\Delta '\) nên ta có
\(\cos \varphi = \frac{{\left| {\overrightarrow n \cdot \overrightarrow {n'} } \right|}}{{\left| {\overrightarrow n } \right| \cdot \left| {\overrightarrow {n'} } \right|}} = \frac{{\left| {1 \cdot 1 + \left( { - \sqrt 3 } \right) \cdot \sqrt 3 } \right|}}{{\sqrt {{1^2} + {{\left( { - \sqrt 3 } \right)}^2}} \cdot \sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2}} }}\)\( = \frac{1}{2}\) \( \Rightarrow \varphi = 60^\circ \).
Lời giải
Hai đường đi của hai tàu có cặp vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( { - 33;25} \right),\overrightarrow {{u_2}} = \left( { - 30; - 40} \right)\).
Gọi \(\varphi \) là góc giữa hai đường đi của hai tàu.
Ta có \(\cos \varphi = \frac{{\left| {\overrightarrow {{u_1}} \cdot \overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right| \cdot \left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| { - 33 \cdot \left( { - 30} \right) + 25 \cdot \left( { - 40} \right)} \right|}}{{\sqrt {{{\left( { - 33} \right)}^2} + {{25}^2}} \cdot \sqrt {{{\left( { - 30} \right)}^2} + {{\left( { - 40} \right)}^2}} }} \approx 0,00483 \Rightarrow \varphi \approx 89,7^\circ \).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.