Câu hỏi:

25/01/2026 8 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = - 4 + 5t\\y = 2 - 2t\end{array} \right.\)\({d_2}:3x - 7y - 3 = 0\).

a) Một vectơ pháp tuyến của đường thẳng \({d_1}\)\(\overrightarrow n = \left( {2; - 5} \right)\).

Đúng
Sai

b) Phương trình tổng quát của đường thẳng \({d_1}\)\(2x - 5y - 2 = 0\).

Đúng
Sai

c) \({d_1}\) cắt \({d_2}\).

Đúng
Sai
d) Góc giữa hai đường thẳng bằng \(45^\circ \).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đường thẳng \({d_1}\) có một vectơ chỉ phương là \(\overrightarrow u = \left( {5; - 2} \right)\) nên có một vectơ pháp tuyến là \(\overrightarrow n = \left( {2;5} \right)\).

b) Đường thẳng \({d_1}\) đi qua điểm \(\left( { - 4;2} \right)\) và nhận \(\overrightarrow n = \left( {2;5} \right)\) làm vectơ pháp tuyến có phương trình là

\(2\left( {x + 4} \right) + 5\left( {y - 2} \right) = 0\)\( \Leftrightarrow 2x + 5y - 2 = 0\).

c) Ta có \(\overrightarrow n = \left( {2;5} \right)\) là một vectơ pháp tuyến của đường thẳng \({d_1}\)\(\overrightarrow {n'} = \left( {3; - 7} \right)\) là một vectơ pháp tuyến của đường thẳng \({d_2}\).

Ta thấy \(\overrightarrow n \)\(\overrightarrow {n'} \) không cùng phương nên hai đường thẳng này cắt nhau.

d) Gọi \(\varphi \) là góc giữa hai đường thẳng \({d_1}\)\({d_2}\).

Ta có \(\cos \varphi = \frac{{\left| {\overrightarrow n \cdot \overrightarrow {n'} } \right|}}{{\left| {\overrightarrow n } \right| \cdot \left| {\overrightarrow {n'} } \right|}} = \frac{{\left| {2 \cdot 3 + 5 \cdot \left( { - 7} \right)} \right|}}{{\sqrt {{2^2} + {5^2}} \cdot \sqrt {{3^2} + {{\left( { - 7} \right)}^2}} }} = \frac{{29}}{{29\sqrt 2 }} = \frac{{\sqrt 2 }}{2}\)\( \Rightarrow \varphi = 45^\circ \).

Đáp án: a) Sai;    b) Sai;   c) Đúng;    d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\overrightarrow n = \left( {1; - \sqrt 3 } \right)\)\(\overrightarrow {n'} = \left( {1;\sqrt 3 } \right)\) là vectơ pháp tuyến của \(\Delta \)\(\Delta '\).

Gọi \(\varphi \) là góc giữa hai đường thẳng \(\Delta \)\(\Delta '\) nên ta có

\(\cos \varphi = \frac{{\left| {\overrightarrow n \cdot \overrightarrow {n'} } \right|}}{{\left| {\overrightarrow n } \right| \cdot \left| {\overrightarrow {n'} } \right|}} = \frac{{\left| {1 \cdot 1 + \left( { - \sqrt 3 } \right) \cdot \sqrt 3 } \right|}}{{\sqrt {{1^2} + {{\left( { - \sqrt 3 } \right)}^2}} \cdot \sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2}} }}\)\( = \frac{1}{2}\) \( \Rightarrow \varphi = 60^\circ \).

Lời giải

Hai đường đi của hai tàu có cặp vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( { - 33;25} \right),\overrightarrow {{u_2}} = \left( { - 30; - 40} \right)\).

Gọi \(\varphi \) là góc giữa hai đường đi của hai tàu.

Ta có \(\cos \varphi = \frac{{\left| {\overrightarrow {{u_1}} \cdot \overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right| \cdot \left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| { - 33 \cdot \left( { - 30} \right) + 25 \cdot \left( { - 40} \right)} \right|}}{{\sqrt {{{\left( { - 33} \right)}^2} + {{25}^2}} \cdot \sqrt {{{\left( { - 30} \right)}^2} + {{\left( { - 40} \right)}^2}} }} \approx 0,00483 \Rightarrow \varphi \approx 89,7^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{3\sqrt {10} }}{{10}}\).     
B. \(\frac{{ - 3\sqrt {10} }}{{10}}\).  
C. \(\frac{{ - \sqrt {10} }}{{10}}\).         
D. \(\frac{{\sqrt {10} }}{{10}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP