Câu hỏi:

25/01/2026 8 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho hai điểm \(A\left( {1;1} \right),B\left( {4;2} \right)\) và đường thẳng \(d\) có phương trình: \(3x - 4y + 2 = 0\).

a) Đường thẳng \(d\) có một vectơ pháp tuyến \(\overrightarrow n  = \left( {3;4} \right)\).

Đúng
Sai

b) Đường thẳng \(AB\) có một vectơ chỉ phương là \(\overrightarrow {AB}  = \left( {3;1} \right)\).

Đúng
Sai

c) Điểm \(A\left( {1;1} \right)\) nằm trên đường thẳng \(d:3x - 4y + 2 = 0\).

Đúng
Sai
d) Khoảng cách từ điểm \(A\left( {1;1} \right)\) đến đường thẳng \(d\) bằng \(\frac{1}{5}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đường thẳng \(d\) có một vectơ pháp tuyến \(\overrightarrow n = \left( {3; - 4} \right)\).

b) Đường thẳng \(AB\) có một vectơ chỉ phương là \(\overrightarrow {AB} = \left( {3;1} \right)\).

c) Thay tọa độ điểm \(A\left( {1;1} \right)\) vào phương trình đường thẳng \(d\) ta thấy không thỏa mãn.

Do đó \(A\left( {1;1} \right)\) không nằm trên đường thẳng \(d:3x - 4y + 2 = 0\).

d) \(d\left( {A,d} \right) = \frac{{\left| {3 \cdot 1 - 4 \cdot 1 + 2} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} }} = \frac{1}{5}\).

Đáp án: a) Sai;    b) Đúng;   c) Sai;    d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\overrightarrow n = \left( {1; - \sqrt 3 } \right)\)\(\overrightarrow {n'} = \left( {1;\sqrt 3 } \right)\) là vectơ pháp tuyến của \(\Delta \)\(\Delta '\).

Gọi \(\varphi \) là góc giữa hai đường thẳng \(\Delta \)\(\Delta '\) nên ta có

\(\cos \varphi = \frac{{\left| {\overrightarrow n \cdot \overrightarrow {n'} } \right|}}{{\left| {\overrightarrow n } \right| \cdot \left| {\overrightarrow {n'} } \right|}} = \frac{{\left| {1 \cdot 1 + \left( { - \sqrt 3 } \right) \cdot \sqrt 3 } \right|}}{{\sqrt {{1^2} + {{\left( { - \sqrt 3 } \right)}^2}} \cdot \sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2}} }}\)\( = \frac{1}{2}\) \( \Rightarrow \varphi = 60^\circ \).

Lời giải

Hai đường đi của hai tàu có cặp vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( { - 33;25} \right),\overrightarrow {{u_2}} = \left( { - 30; - 40} \right)\).

Gọi \(\varphi \) là góc giữa hai đường đi của hai tàu.

Ta có \(\cos \varphi = \frac{{\left| {\overrightarrow {{u_1}} \cdot \overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right| \cdot \left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| { - 33 \cdot \left( { - 30} \right) + 25 \cdot \left( { - 40} \right)} \right|}}{{\sqrt {{{\left( { - 33} \right)}^2} + {{25}^2}} \cdot \sqrt {{{\left( { - 30} \right)}^2} + {{\left( { - 40} \right)}^2}} }} \approx 0,00483 \Rightarrow \varphi \approx 89,7^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{3\sqrt {10} }}{{10}}\).     
B. \(\frac{{ - 3\sqrt {10} }}{{10}}\).  
C. \(\frac{{ - \sqrt {10} }}{{10}}\).         
D. \(\frac{{\sqrt {10} }}{{10}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP