Khi nuôi cá thí nghiệm trong hồ, một nhà sinh học tìm được quy luật rằng: Nếu trên mỗi đơn vị diện tích của mặt hồ có \(n\) con cá thì trung bình mỗi con cá sau một vụ cân nặng \(P\left( n \right) = 360 - 10n\)(đơn vị khối lượng). Hỏi người nuôi phải thả bao nhiêu con cá trên một đơn vị diện tích để trọng lượng cá sau mỗi vụ thu được là nhiều nhất?
Quảng cáo
Trả lời:
Tổng trọng lượng cá thu được sau một vụ là: \(T\left( n \right) = n\left( {360 - 10n} \right) = 360n - 10{n^2}\).
Đây là một tam thức bậc hai với ẩn là \(n\) có hệ số \(a = - 10 < 0\) và \(b = 360\) \( \Rightarrow \frac{{ - b}}{{2a}} = \frac{{ - 360}}{{2.\left( { - 10} \right)}} = 18\)
Khi đó \(T\left( {18} \right) = 3240\).
Vậy người nuôi cần thả \(18\) con cá trên một đơn vị diện tích để đạt tổng trọng lượng cá lớn nhất
là \(3240\) (đơn vị khối lượng).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng: Với \(m \ne 2\) thì \(f\left( x \right)\) là tam thức bậc hai.
b) Sai: Khi \(m = 3\) thì \(f\left( x \right)\) luôn nhận giá trị dương với mọi \(x \in \mathbb{R}\).
Khi \(m = 3\) thì \[f\left( x \right) = {x^2} - 4x + 3\] nên \(f\left( x \right) > 0 \Leftrightarrow {x^2} - 4x + 3 > 0 \Leftrightarrow \left[ \begin{array}{l}x > 3\\x < 1\end{array} \right.\)
c) Sai: Tam thức bậc hai \[f\left( x \right)\] luôn nhận giá trị âm với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(m \le 2\)
Nếu \(m = 2\) thì \[f\left( x \right) = - 2x + 3 \Rightarrow f\left( x \right) < 0 \Leftrightarrow x > \frac{3}{2}\] nên không xảy ra \[f\left( x \right) < 0\] với mọi \(x \in \mathbb{R}\)
d) Đúng: Với mọi giá trị của \(m\) thì \(f\left( x \right) = 0\) đều có nghiệm.
Nếu \(m = 2\) thì \[f\left( x \right) = - 2x + 3\] nên \(f\left( x \right) = 0 \Leftrightarrow x = \frac{3}{2}\).
Nếu \(m \ne 2\) thì \(\Delta ' = {\left( {m - 1} \right)^2} - 3\left( {m - 2} \right) = {\left( {m - \frac{5}{2}} \right)^2} + \frac{3}{4} > 0,\,\,\forall m \in \mathbb{R}\).
Vậy với mọi giá trị của \(m\) thì \(f\left( x \right) = 0\) đều có nghiệm.
Lời giải
a) Đúng: Theo qui tắc nhân có \[5.5 = 25\] số có hai chữ số.
b) Sai: Gọi số có 3 chữ số khác nhau là \(\overline {abc} \).
Chọn \(a\) có 5 cách.
Chọn \(b\) có 4 cách.
Chọn \(c\) có 3 cách.
Suy ra có \[5.4.3 = 60\] số có ba chữ số khác nhau.
c) Đúng: Gọi số chẵn có ba chữ số khác nhau là \(\overline {abc} \).
Chọn \(c\) có 2 cách.
Chọn \(a\) có 4 cách.
Chọn \(b\) có 3 cách.
Suy ra có \[2.4.3 = 24\] số chẵn có ba chữ số khác nhau.
d) Sai: Gọi số lẻ có ba chữ số khác nhau là \(\overline {abc} \).
Chọn \(c\) có 3 cách.
Chọn \(a\) có 4 cách.
Chọn \(b\) có 3 cách.
Suy ra có \[3.4.3 = 36\] số lẻ có ba chữ số khác nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
