Xác định số nghiệm của phương trình \({x^2} - 2x - 8 = 4\sqrt {\left( {4 - x} \right)\left( {x + 2} \right)} \)
Quảng cáo
Trả lời:
Điều kiện: \(\left( {4 - x} \right)\left( {x + 2} \right) \ge 0 \Leftrightarrow x \in \left[ { - 2;\,4} \right]\).
\({x^2} - 2x - 8 = 4\sqrt {\left( {4 - x} \right)\left( {x + 2} \right)} \)\( \Leftrightarrow {x^2} - 2x - 8 = 4\sqrt { - \left( {{x^2} - 2x - 8} \right)} \left( 1 \right)\).
Đặt \(t = \sqrt { - \left( {{x^2} - 2x - 8} \right)} \), \(t \ge 0\) \( \Leftrightarrow {t^2} = - \left( {{x^2} - 2x - 8} \right)\)\( \Leftrightarrow {x^2} - 2x - 8 = - {t^2}\).
\(\left( 1 \right) \Leftrightarrow - {t^2} = 4t\)\( \Leftrightarrow {t^2} + 4t = 0\)\( \Leftrightarrow \left[ \begin{array}{l}t = 0\left( n \right)\\t = - 4\left( l \right)\end{array} \right.\)\( \Leftrightarrow \sqrt { - \left( {{x^2} - 2x - 8} \right)} = 0\)\( \Leftrightarrow - \left( {{x^2} - 2x - 8} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = - 2\left( n \right)\\x = 4\left( n \right)\end{array} \right.\).
Vậy phương trình đã cho có hai nghiệm.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng: Với \(m \ne 2\) thì \(f\left( x \right)\) là tam thức bậc hai.
b) Sai: Khi \(m = 3\) thì \(f\left( x \right)\) luôn nhận giá trị dương với mọi \(x \in \mathbb{R}\).
Khi \(m = 3\) thì \[f\left( x \right) = {x^2} - 4x + 3\] nên \(f\left( x \right) > 0 \Leftrightarrow {x^2} - 4x + 3 > 0 \Leftrightarrow \left[ \begin{array}{l}x > 3\\x < 1\end{array} \right.\)
c) Sai: Tam thức bậc hai \[f\left( x \right)\] luôn nhận giá trị âm với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(m \le 2\)
Nếu \(m = 2\) thì \[f\left( x \right) = - 2x + 3 \Rightarrow f\left( x \right) < 0 \Leftrightarrow x > \frac{3}{2}\] nên không xảy ra \[f\left( x \right) < 0\] với mọi \(x \in \mathbb{R}\)
d) Đúng: Với mọi giá trị của \(m\) thì \(f\left( x \right) = 0\) đều có nghiệm.
Nếu \(m = 2\) thì \[f\left( x \right) = - 2x + 3\] nên \(f\left( x \right) = 0 \Leftrightarrow x = \frac{3}{2}\).
Nếu \(m \ne 2\) thì \(\Delta ' = {\left( {m - 1} \right)^2} - 3\left( {m - 2} \right) = {\left( {m - \frac{5}{2}} \right)^2} + \frac{3}{4} > 0,\,\,\forall m \in \mathbb{R}\).
Vậy với mọi giá trị của \(m\) thì \(f\left( x \right) = 0\) đều có nghiệm.
Lời giải
a) Sai: Ta có số cách chọn ngẫu nhiên 4 quân bài là: \(C_{52}^4 = 270725\).
Suy ra số phần tử của không gian mẫu là: \(n\left( \Omega \right) = 270725\).
Vì bộ bài chỉ có 1 tứ quý Át nên số phần tử của biến cố \[A\] là: \(n\left( A \right) = 1\).
Vậy xác suất của biến cố \(A\) là \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{1}{{270725}}\].
b) Đúng: Ta có số cách chọn ngẫu nhiên 4 quân bài là: \(C_{52}^4 = 270725\).
Suy ra số phần tử của không gian mẫu là: \(n\left( \Omega \right) = 270725\).
Có \(C_4^2\) cách rút được hai quân Át, Có \(C_4^2\) cách rút được hai quân \(K\) nên số phần tử của biến cố \[B\] là: \(n\left( B \right) = C_4^2.C_4^2 = 36\).
Vậy xác suất của biến cố \(B\) là \[P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{36}}{{270725}}\].
c) Sai: Ta có số cách chọn ngẫu nhiên 4 quân bài là: \(C_{52}^4 = 270725\).
Suy ra số phần tử của không gian mẫu là: \(n\left( \Omega \right) = 270725\).
Biến cố \(\overline C \): “ Rút không được quân Át nào”.
Có \(C_{48}^4\) cách rút bốn quân không cố quân Át nào nên số phần tử của biến cố \[\overline C \] là: \(n\left( {\overline C } \right) = C_{48}^4 = 194580\).
Vậy xác suất của biến cố \(C\) là \[P\left( C \right) = 1 - P\left( {\overline C } \right) = 1 - \frac{{n\left( {\overline C } \right)}}{{n\left( \Omega \right)}} = 1 - \frac{{194580}}{{270725}} = 1 - \frac{{38916}}{{54145}} = \frac{{15229}}{{54145}}\].
d) Đúng: Ta có số cách chọn ngẫu nhiên 4 quân bài là: \(C_{52}^4 = 270725\).
Suy ra số phần tử của không gian mẫu là: \(n\left( \Omega \right) = 270725\).
Có \(C_{13}^1\) cách chọn ra 1 tứ quý. Ứng với tứ quý này có \(C_4^2\) cách chọn ra 2 quân bài.
Có \(C_{12}^2\) cách chọn ra 2 tứ quý từ 12 tứ quý còn lại. Mỗi tứ quý này có \(C_4^1\) cách chọn ra 1 quân bài nên số phần tử của biến cố \[D\] là: \(n\left( D \right) = C_{13}^1.C_4^2.C_{12}^2.{\left( {C_4^1} \right)^2} = 82368\).
Vậy xác suất của biến cố \(D\) là \[P\left( D \right) = P\left( D \right) = \frac{{n\left( D \right)}}{{n\left( \Omega \right)}} = \frac{{82368}}{{270725}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
