Câu hỏi:

21/12/2025 42 Lưu

Xác định số nghiệm của phương trình \({x^2} - 2x - 8 = 4\sqrt {\left( {4 - x} \right)\left( {x + 2} \right)} \)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Điều kiện: \(\left( {4 - x} \right)\left( {x + 2} \right) \ge 0 \Leftrightarrow x \in \left[ { - 2;\,4} \right]\).

\({x^2} - 2x - 8 = 4\sqrt {\left( {4 - x} \right)\left( {x + 2} \right)} \)\( \Leftrightarrow {x^2} - 2x - 8 = 4\sqrt { - \left( {{x^2} - 2x - 8} \right)} \left( 1 \right)\).

Đặt \(t = \sqrt { - \left( {{x^2} - 2x - 8} \right)} \), \(t \ge 0\) \( \Leftrightarrow {t^2} =  - \left( {{x^2} - 2x - 8} \right)\)\( \Leftrightarrow {x^2} - 2x - 8 =  - {t^2}\).

\(\left( 1 \right) \Leftrightarrow  - {t^2} = 4t\)\( \Leftrightarrow {t^2} + 4t = 0\)\( \Leftrightarrow \left[ \begin{array}{l}t = 0\left( n \right)\\t =  - 4\left( l \right)\end{array} \right.\)\( \Leftrightarrow \sqrt { - \left( {{x^2} - 2x - 8} \right)}  = 0\)\( \Leftrightarrow  - \left( {{x^2} - 2x - 8} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x =  - 2\left( n \right)\\x = 4\left( n \right)\end{array} \right.\).

Vậy phương trình đã cho có hai nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tổng trọng lượng cá thu được sau một vụ là: \(T\left( n \right) = n\left( {360 - 10n} \right) = 360n - 10{n^2}\).

Đây là một tam thức bậc hai với ẩn là \(n\) có hệ số \(a =  - 10 < 0\) và \(b = 360\) \( \Rightarrow \frac{{ - b}}{{2a}} = \frac{{ - 360}}{{2.\left( { - 10} \right)}} = 18\)

Khi đó \(T\left( {18} \right) = 3240\).

Vậy người nuôi cần thả \(18\) con cá trên một đơn vị diện tích để đạt tổng trọng lượng cá lớn nhất

là \(3240\) (đơn vị khối lượng).

Lời giải

a) Đúng: Theo qui tắc nhân có \[5.5 = 25\] số có hai chữ số.

b) Sai: Gọi số có 3 chữ số khác nhau là \(\overline {abc} \).

Chọn \(a\) có 5 cách.

Chọn \(b\) có 4 cách.

Chọn \(c\) có 3 cách.

Suy ra có \[5.4.3 = 60\] số có ba chữ số khác nhau.

c) Đúng: Gọi số chẵn có ba chữ số khác nhau là \(\overline {abc} \).

Chọn \(c\) có 2 cách.

Chọn \(a\) có 4 cách.

Chọn \(b\) có 3 cách.

Suy ra có \[2.4.3 = 24\] số chẵn có ba chữ số khác nhau.

d) Sai: Gọi số lẻ có ba chữ số khác nhau là \(\overline {abc} \).

Chọn \(c\) có 3 cách.

Chọn \(a\) có 4 cách.

Chọn \(b\) có 3 cách.

Suy ra có \[3.4.3 = 36\] số lẻ có ba chữ số khác nhau.

Câu 5

A. \[2256\].                     

B. \[2304\].                   

C. \[1128\].                  

D. \[96\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP