Câu hỏi:

21/12/2025 62 Lưu

Trong mặt phẳng \(Oxy\), cho tam giác \[ABC\] có \[A\left( {2\,;\,0} \right),\,\,B\left( {0\,;\,3} \right)\] và \[C\left( {--3\,;\,1} \right)\].

a) Phương trình của đường thẳng \(d\) đi qua \[B\] và song song với \[AC\] là \(x + 5y - 15 = 0\).

b) Phương trình của đường trung trực đoạn thẳng \(BC\) là \(\left\{ \begin{array}{l}x =  - \frac{3}{2} + 2t\\y = 2 - 3t\end{array} \right.\) với \(t \in \mathbb{R}\).

c) Đường thẳng \(AB\) có phương trình là \(3x + 2y + 6 = 0\).

d) Đường cao ứng với đỉnh \(C\) của tam giác \(ABC\) đi qua điểm \(M\left( {2;3} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\overrightarrow {AC}  = \left( { - 5;1} \right)\) nên đường thẳng \(d\) có một vectơ pháp tuyến là \(\overrightarrow {n\,}  = \left( {1;5} \right)\).

Phương trình của đường thẳng \(d\) là \(1.\left( {x - 0} \right) + 5.\left( {y - 3} \right) = 0 \Leftrightarrow x + 5y - 15 = 0\).

Vậy phương trình tổng quát đường thẳng \(d\) là \(x + 5y - 15 = 0\)

Đường thẳng \(\Delta \) là trung trực của đoạn thẳng \(BC\) nhận \[\overrightarrow {CB}  = \left( {3;2} \right)\] làm véc tơ pháp tuyến nên véc tơ chỉ phương của \(\Delta \) là \(\overrightarrow u  = \left( {2; - 3} \right)\). Mà \(\Delta \) đi qua trung điểm \(I\left( { - \frac{3}{2};2} \right)\) của \(BC\) nên \(\Delta \) có phương trình là \(\left\{ \begin{array}{l}x =  - \frac{3}{2} + 2t\\y = 2 - 3t\end{array} \right.\) với \(t \in \mathbb{R}\).

Đường thẳng \(AB\) có véc tơ chỉ phương là \[\overrightarrow {AB}  = \left( { - 2\,;\,3} \right)\] nên \(AB\) có véc tơ pháp tuyến là \(\overrightarrow n  = \left( {3;2} \right)\) và đi qua điểm \[A\left( {2\,;\,0} \right)\] nên \(AB\) có phương trình là

\(3\left( {x - 2} \right) + 2\left( {y - 0} \right) = 0 \Leftrightarrow 3x + 2y - 6 = 0\)

Đường cao ứng với đỉnh \(C\) của tam giác \(ABC\) đi qua điểm \[C\left( {--3\,;\,1} \right)\] và nhận \(\overrightarrow {BA}  = \left( {2; - 3} \right)\) làm véc tơ pháp tuyến nên có phương trình là

\(2\left( {x + 3} \right) - 3\left( {y - 1} \right) = 0 \Leftrightarrow 2x - 3y + 9 = 0\).

Từ đó dễ thấy đường thẳng này không đi qua điểm \(M\left( {2;3} \right)\).

a) Đúng: Phương trình của đường thẳng \(d\) đi qua \[B\] và song song với \[AC\] là \(x + 5y - 15 = 0\).

b) Đúng: Phương trình của đường trung trực đoạn thẳng \(BC\) là \(\left\{ \begin{array}{l}x =  - \frac{3}{2} + 2t\\y = 2 - 3t\end{array} \right.\) với \(t \in \mathbb{R}\).

c) Sai: Đường thẳng \(AB\) có phương trình là \(3x + 2y + 6 = 0\).

d) Sai: Đường cao ứng với đỉnh \(C\) của tam giác \(ABC\) đi qua điểm \(M\left( {2;3} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng: Theo qui tắc nhân có \[5.5 = 25\] số có hai chữ số.

b) Sai: Gọi số có 3 chữ số khác nhau là \(\overline {abc} \).

Chọn \(a\) có 5 cách.

Chọn \(b\) có 4 cách.

Chọn \(c\) có 3 cách.

Suy ra có \[5.4.3 = 60\] số có ba chữ số khác nhau.

c) Đúng: Gọi số chẵn có ba chữ số khác nhau là \(\overline {abc} \).

Chọn \(c\) có 2 cách.

Chọn \(a\) có 4 cách.

Chọn \(b\) có 3 cách.

Suy ra có \[2.4.3 = 24\] số chẵn có ba chữ số khác nhau.

d) Sai: Gọi số lẻ có ba chữ số khác nhau là \(\overline {abc} \).

Chọn \(c\) có 3 cách.

Chọn \(a\) có 4 cách.

Chọn \(b\) có 3 cách.

Suy ra có \[3.4.3 = 36\] số lẻ có ba chữ số khác nhau.

Lời giải

Tổng trọng lượng cá thu được sau một vụ là: \(T\left( n \right) = n\left( {360 - 10n} \right) = 360n - 10{n^2}\).

Đây là một tam thức bậc hai với ẩn là \(n\) có hệ số \(a =  - 10 < 0\) và \(b = 360\) \( \Rightarrow \frac{{ - b}}{{2a}} = \frac{{ - 360}}{{2.\left( { - 10} \right)}} = 18\)

Khi đó \(T\left( {18} \right) = 3240\).

Vậy người nuôi cần thả \(18\) con cá trên một đơn vị diện tích để đạt tổng trọng lượng cá lớn nhất

là \(3240\) (đơn vị khối lượng).

Câu 4

A. \[2256\].                     

B. \[2304\].                   

C. \[1128\].                  

D. \[96\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP