Câu hỏi:

21/12/2025 7 Lưu

Cho biểu thức \[f\left( x \right) = \left( {m - 2} \right){x^2} - 2\left( {m - 1} \right)x + 3\].

a) Với \(m \ne 2\) thì \(f\left( x \right)\) là tam thức bậc hai.

b) Khi \(m = 3\) thì \(f\left( x \right)\) luôn nhận giá trị dương với mọi \(x \in \mathbb{R}\).

c) Tam thức bậc hai \[f\left( x \right)\] luôn nhận giá trị âm với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(m \le 2\)

d) Với mọi giá trị của \(m\) thì \(f\left( x \right) = 0\) đều có nghiệm.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng: Với \(m \ne 2\) thì \(f\left( x \right)\) là tam thức bậc hai.

b) Sai: Khi \(m = 3\) thì \(f\left( x \right)\) luôn nhận giá trị dương với mọi \(x \in \mathbb{R}\).

Khi \(m = 3\) thì \[f\left( x \right) = {x^2} - 4x + 3\] nên \(f\left( x \right) > 0 \Leftrightarrow {x^2} - 4x + 3 > 0 \Leftrightarrow \left[ \begin{array}{l}x > 3\\x < 1\end{array} \right.\)

c) Sai: Tam thức bậc hai \[f\left( x \right)\] luôn nhận giá trị âm với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(m \le 2\)

Nếu \(m = 2\) thì \[f\left( x \right) =  - 2x + 3 \Rightarrow f\left( x \right) < 0 \Leftrightarrow x > \frac{3}{2}\] nên không xảy ra \[f\left( x \right) < 0\] với mọi \(x \in \mathbb{R}\)

d) Đúng: Với mọi giá trị của \(m\) thì \(f\left( x \right) = 0\) đều có nghiệm.

Nếu \(m = 2\) thì \[f\left( x \right) =  - 2x + 3\] nên \(f\left( x \right) = 0 \Leftrightarrow x = \frac{3}{2}\).

Nếu \(m \ne 2\) thì \(\Delta ' = {\left( {m - 1} \right)^2} - 3\left( {m - 2} \right) = {\left( {m - \frac{5}{2}} \right)^2} + \frac{3}{4} > 0,\,\,\forall m \in \mathbb{R}\).

Vậy với mọi giá trị của \(m\) thì \(f\left( x \right) = 0\) đều có nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng: Theo qui tắc nhân có \[5.5 = 25\] số có hai chữ số.

b) Sai: Gọi số có 3 chữ số khác nhau là \(\overline {abc} \).

Chọn \(a\) có 5 cách.

Chọn \(b\) có 4 cách.

Chọn \(c\) có 3 cách.

Suy ra có \[5.4.3 = 60\] số có ba chữ số khác nhau.

c) Đúng: Gọi số chẵn có ba chữ số khác nhau là \(\overline {abc} \).

Chọn \(c\) có 2 cách.

Chọn \(a\) có 4 cách.

Chọn \(b\) có 3 cách.

Suy ra có \[2.4.3 = 24\] số chẵn có ba chữ số khác nhau.

d) Sai: Gọi số lẻ có ba chữ số khác nhau là \(\overline {abc} \).

Chọn \(c\) có 3 cách.

Chọn \(a\) có 4 cách.

Chọn \(b\) có 3 cách.

Suy ra có \[3.4.3 = 36\] số lẻ có ba chữ số khác nhau.

Lời giải

a) Sai: Ta có số cách chọn ngẫu nhiên 4 quân bài là: \(C_{52}^4 = 270725\).

Suy ra số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = 270725\).

Vì bộ bài chỉ có 1 tứ quý Át nên số phần tử của biến cố \[A\] là: \(n\left( A \right) = 1\).

Vậy xác suất của biến cố \(A\) là \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{1}{{270725}}\].

b) Đúng: Ta có số cách chọn ngẫu nhiên 4 quân bài là: \(C_{52}^4 = 270725\).

Suy ra số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = 270725\).

Có \(C_4^2\) cách rút được hai quân Át, Có \(C_4^2\) cách rút được hai quân \(K\) nên số phần tử của biến cố \[B\] là: \(n\left( B \right) = C_4^2.C_4^2 = 36\).

Vậy xác suất của biến cố \(B\) là \[P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{{36}}{{270725}}\].

c) Sai: Ta có số cách chọn ngẫu nhiên 4 quân bài là: \(C_{52}^4 = 270725\).

Suy ra số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = 270725\).

Biến cố \(\overline C \): “ Rút không được quân Át nào”.

Có \(C_{48}^4\) cách rút bốn quân không cố quân Át nào nên số phần tử của biến cố \[\overline C \] là: \(n\left( {\overline C } \right) = C_{48}^4 = 194580\).

Vậy xác suất của biến cố \(C\) là \[P\left( C \right) = 1 - P\left( {\overline C } \right) = 1 - \frac{{n\left( {\overline C } \right)}}{{n\left( \Omega  \right)}} = 1 - \frac{{194580}}{{270725}} = 1 - \frac{{38916}}{{54145}} = \frac{{15229}}{{54145}}\].

d) Đúng: Ta có số cách chọn ngẫu nhiên 4 quân bài là: \(C_{52}^4 = 270725\).

Suy ra số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = 270725\).

Có \(C_{13}^1\) cách chọn ra 1 tứ quý. Ứng với tứ quý này có \(C_4^2\) cách chọn ra 2 quân bài.

Có \(C_{12}^2\) cách chọn ra 2 tứ quý từ 12 tứ quý còn lại. Mỗi tứ quý này có \(C_4^1\) cách chọn ra 1 quân bài nên số phần tử của biến cố \[D\] là: \(n\left( D \right) = C_{13}^1.C_4^2.C_{12}^2.{\left( {C_4^1} \right)^2} = 82368\).

Vậy xác suất của biến cố \(D\) là \[P\left( D \right) = P\left( D \right) = \frac{{n\left( D \right)}}{{n\left( \Omega  \right)}} = \frac{{82368}}{{270725}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP