Có bao nhiêu giá trị nguyên âm của tham số \[m\] để hàm số \[y = \sqrt {{x^2} - 2mx - 2m + 3} \] có tập xác định là \[\mathbb{R}\].
Quảng cáo
Trả lời:
Hàm số \[y = \sqrt {{x^2} - 2mx - 2m + 3} \] có tập xác định là \[\mathbb{R}\] khi \[{x^2} - 2mx - 2m + 3 \ge 0\] với mọi \[x \in \mathbb{R}\]
\[ \Leftrightarrow \left\{ \begin{array}{l}\Delta ' \le 0\\a > 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 2m - 3 \le 0\\1 > 0\end{array} \right.\]\[ \Leftrightarrow - 3 \le m \le 1\].
Do \[m\] nguyên âm nên \[m \in \left\{ { - 3; - 2; - 1} \right\}\].
Vậy có \[3\] giá trị nguyên âm của \[m\] thỏa yêu cầu bài toán.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) (nghìn đồng) là số tiền giảm giá. Ta có \(0 < x < 30\).
Số lượng dưa bán ra khi giảm giá: \(40 + 2x\) (trái).
Lợi nhuận trên mỗi trái dưa sau khi giảm giá: \(30 - x\) (nghìn đồng).
Lợi nhuận bán dưa mỗi ngày là: \(\left( {40 + 2x} \right)\left( {30 - x} \right) = - 2{x^2} + 20x + 1200\) (nghìn đồng).
Xét hàm số \(f\left( x \right) = - 2{x^2} + 20x + 1200\) trên khoảng \(\left( {0;30} \right)\).
Do hàm số có hệ số \(a = - 2 < 0\) nên hàm số đạt giá trị lớn nhất tại \(x = - \frac{b}{{2a}} = 5\).
Vậy cửa hàng cần giảm giá 5000 đồng cho mỗi quả để đạt được lợi nhuận cao nhất.
Vậy giá bán mỗi quả dưa cần tìm là 45000 đồng.
a) Sai: Số lượng dưa bán ra khi giảm giá là \(50\) trái.
b) Sai: Lợi nhuận trên mỗi trái dưa sau khi giảm giá \(25.000\) đồng.
c) Đúng: Lợi nhuận bán dưa mỗi ngày được biểu thị bằng tam thức \(f\left( x \right) = - 2{x^2} + 20x + 1200\)
d) Đúng: Giá bán mỗi quả dưa \(45.000\) đồng thì cửa hàng thu được lợi nhuận mỗi ngày cao nhất.
Lời giải
Gọi \[\Omega \] là không gian mẫu \[ \Rightarrow n\left( \Omega \right) = 10!\]
Kí hiệu 10 ghế như sau: DXXD XXD XXD
Trong đó: D là ghế đỏ (dành cho nam) và X là ghế xanh (dành cho nữ)
Gọi A là biến cố “giữa hai bạn nam liên tiếp có đúng hai bạn nữ”
Xếp 4 bạn nam vào ghế đỏ có \[4!\] (cách)
Xếp mỗi cặp 2 bạn nữ vào 3 ô trống giữa 4 bạn nam có \[A_6^2.A_4^2.A_2^2\] (cách)
\[ \Rightarrow n\left( A \right) = 4!.A_6^2.A_4^2.A_2^2 = 17280\].
Vậy xác suất cần tìm là \[P\left( A \right) = \frac{{17280}}{{10!}} = \frac{1}{{210}} \Rightarrow \left\{ \begin{array}{l}a = 1\\b = 210\end{array} \right. \Rightarrow T = 2a + b = 212\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.