Câu hỏi:

22/12/2025 49 Lưu

Cho tam giác \(ABC\) có \(\widehat B + \widehat C = 120^\circ ,a = BC = 10\sqrt 3 \). Chu vi đường tròn ngoại tiếp tam giác \(ABC\) bằng

A. \(10\pi \). 
B. \(15\pi \).   
C. \(20\pi \). 
D. \(5\pi \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Có \(\widehat A = 180^\circ  - \left( {\widehat B + \widehat C} \right) = 60^\circ \).

Ta có \(\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{{10\sqrt 3 }}{{2\sin 60^\circ }} = 10\).

Do đó chu vi đường tròn ngoại tiếp tam giác \(ABC\) là \(2\pi R = 20\pi \). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

\(A = \frac{{3{{\sin }^2}\alpha  + 5}}{{{{\sin }^4}\alpha  - {{\cos }^4}\alpha }}\)\( = \frac{{3\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} \cdot \frac{1}{{{{\cos }^2}\alpha }} + 5 \cdot \frac{1}{{{{\cos }^4}\alpha }}}}{{\frac{{{{\sin }^4}\alpha }}{{{{\cos }^4}\alpha }} - 1}}\)\( = \frac{{3{{\tan }^2}\alpha  \cdot \left( {1 + {{\tan }^2}\alpha } \right) + 5 \cdot {{\left( {1 + {{\tan }^2}\alpha } \right)}^2}}}{{{{\tan }^4}\alpha  - 1}}\)

\( = \frac{{3 \cdot {3^2} \cdot \left( {1 + {3^2}} \right) + 5 \cdot {{\left( {1 + {3^2}} \right)}^2}}}{{{3^4} - 1}} = \frac{{77}}{8}\).

Lời giải

Lời giải

Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70m, phương nhìn AC tạo với phương nằm ngang góc 30 độ, phương nhìn BC tạo với phương nằm ngang góc 60 độ. Tính chiều cao ngọn núi so với mặt đất. (ảnh 2)

Xét \(\Delta ABC\) có \(\widehat {BAC} = 90^\circ  + 30^\circ  = 120^\circ \); \(\widehat {ABC} = 90^\circ  - 60^\circ  = 30^\circ \); \(\widehat {ACB} = 180^\circ  - 120^\circ  - 30^\circ  = 30^\circ \).

Áp dụng định lí sin cho tam giác \(ABC\), có

\(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}} \Rightarrow BC = \frac{{AB\sin A}}{{\sin C}} = \frac{{70\sin 120^\circ }}{{\sin 30^\circ }} = 70\sqrt 3 \).

Xét \(\Delta AHC\) có \(CH = BC\sin 60^\circ  = 70\sqrt 3  \cdot \sin 60^\circ  = 105\).

Vậy ngọn núi cao 105 m.

Trả lời: 105.

Câu 3

a) Giá trị \(\sin \alpha  \cdot \cos \alpha  < 0\).
Đúng
Sai
b) Có \(\sin \alpha  = \frac{{2\sqrt 2 }}{3}\).
Đúng
Sai
c) Có \(\tan \alpha  = \frac{{\sqrt 2 }}{4}\).
Đúng
Sai
d) Giá trị biểu thức \(\frac{{6\sqrt 2 \sin \alpha  + 3\cos \alpha }}{{\sqrt 2 \tan \alpha  + 2\sqrt 2 \cot \alpha }} = \frac{9}{5}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP