Cho góc \(\alpha \)\(\left( {90^\circ < \alpha < 180^\circ } \right)\) thỏa mãn \(\sin \alpha = m\left( {0 < m < 1} \right)\). Khi đó:
Cho góc \(\alpha \)\(\left( {90^\circ < \alpha < 180^\circ } \right)\) thỏa mãn \(\sin \alpha = m\left( {0 < m < 1} \right)\). Khi đó:
a) \(\cos \alpha > 0\).
b) \(\cos \alpha = \sqrt {1 - {m^2}} \).
c) \(\sin \left( {180^\circ - \alpha } \right) = m\).
Quảng cáo
Trả lời:
Lời giải
a) Với \(90^\circ < \alpha < 180^\circ \) thì \(\cos \alpha < 0\).
b) Có \({\cos ^2}\alpha = 1 - {\sin ^2}\alpha = 1 - {m^2}\)\( \Rightarrow \cos \alpha = - \sqrt {1 - {m^2}} \).
c) \(\sin \left( {180^\circ - \alpha } \right) = \sin \alpha = m\).
d) \({\tan ^2}\alpha \cdot {\sin ^2}\alpha - {\tan ^2}\alpha + {\sin ^2}\alpha - \sin \alpha = \)\({\tan ^2}\alpha \cdot \left( {{{\sin }^2}\alpha - 1} \right) + {\sin ^2}\alpha - \sin \alpha \)
\( = {\tan ^2}\alpha \cdot \left( { - {{\cos }^2}\alpha } \right) + {\sin ^2}\alpha - \sin \alpha \)\( = - {\sin ^2}\alpha + {\sin ^2}\alpha - \sin \alpha \)\( = - \sin \alpha = - m\).
Đáp án: a) Sai; b) Sai; c) Đúng; d) Sai.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
\(A = \frac{{3{{\sin }^2}\alpha + 5}}{{{{\sin }^4}\alpha - {{\cos }^4}\alpha }}\)\( = \frac{{3\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} \cdot \frac{1}{{{{\cos }^2}\alpha }} + 5 \cdot \frac{1}{{{{\cos }^4}\alpha }}}}{{\frac{{{{\sin }^4}\alpha }}{{{{\cos }^4}\alpha }} - 1}}\)\( = \frac{{3{{\tan }^2}\alpha \cdot \left( {1 + {{\tan }^2}\alpha } \right) + 5 \cdot {{\left( {1 + {{\tan }^2}\alpha } \right)}^2}}}{{{{\tan }^4}\alpha - 1}}\)
\( = \frac{{3 \cdot {3^2} \cdot \left( {1 + {3^2}} \right) + 5 \cdot {{\left( {1 + {3^2}} \right)}^2}}}{{{3^4} - 1}} = \frac{{77}}{8}\).
Lời giải
Lời giải
Xét \(\Delta ABC\) có \(\widehat {BAC} = 90^\circ + 30^\circ = 120^\circ \); \(\widehat {ABC} = 90^\circ - 60^\circ = 30^\circ \); \(\widehat {ACB} = 180^\circ - 120^\circ - 30^\circ = 30^\circ \).
Áp dụng định lí sin cho tam giác \(ABC\), có
\(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}} \Rightarrow BC = \frac{{AB\sin A}}{{\sin C}} = \frac{{70\sin 120^\circ }}{{\sin 30^\circ }} = 70\sqrt 3 \).
Xét \(\Delta AHC\) có \(CH = BC\sin 60^\circ = 70\sqrt 3 \cdot \sin 60^\circ = 105\).
Vậy ngọn núi cao 105 m.
Trả lời: 105.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
