Câu hỏi:

22/12/2025 56 Lưu

Đứng ở vị trí A trên bờ biển, bạn Bình đo được góc nghiêng so với bờ biển tới một vị trí C trên đảo là \(45^\circ \). Sau đó di chuyển dọc bờ biển đến vị trí B cách A một khoảng 105 m và đo được góc nghiêng so với bờ biển tới vị trí C đã chọn là \(35^\circ \). Tính khoảng cách từ vị trí C trên đảo tới bờ biển theo đơn vị mét (làm tròn kết quả đến hàng phần mười).

Tính khoảng cách từ vị trí C trên đảo tới bờ biển theo đơn vị mét (làm tròn kết quả đến hàng phần mười). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

43,2

Lời giải

Xét \(\Delta ACH\) có \(AH = \frac{{CH}}{{\tan 45^\circ }}\).

Xét \(\Delta BCH\) có \(BH = \frac{{CH}}{{\tan 35^\circ }}\).

Có \(AH + BH = 105\) nên \(\frac{{CH}}{{\tan 45^\circ }} + \frac{{CH}}{{\tan 35^\circ }} = 105\)\( \Leftrightarrow CH = 105:\left( {\frac{1}{{\tan 45^\circ }} + \frac{1}{{\tan 35^\circ }}} \right) \approx 43,2\)(m).

Trả lời: 43,2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

\(A = \frac{{3{{\sin }^2}\alpha  + 5}}{{{{\sin }^4}\alpha  - {{\cos }^4}\alpha }}\)\( = \frac{{3\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} \cdot \frac{1}{{{{\cos }^2}\alpha }} + 5 \cdot \frac{1}{{{{\cos }^4}\alpha }}}}{{\frac{{{{\sin }^4}\alpha }}{{{{\cos }^4}\alpha }} - 1}}\)\( = \frac{{3{{\tan }^2}\alpha  \cdot \left( {1 + {{\tan }^2}\alpha } \right) + 5 \cdot {{\left( {1 + {{\tan }^2}\alpha } \right)}^2}}}{{{{\tan }^4}\alpha  - 1}}\)

\( = \frac{{3 \cdot {3^2} \cdot \left( {1 + {3^2}} \right) + 5 \cdot {{\left( {1 + {3^2}} \right)}^2}}}{{{3^4} - 1}} = \frac{{77}}{8}\).

Lời giải

Lời giải

Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70m, phương nhìn AC tạo với phương nằm ngang góc 30 độ, phương nhìn BC tạo với phương nằm ngang góc 60 độ. Tính chiều cao ngọn núi so với mặt đất. (ảnh 2)

Xét \(\Delta ABC\) có \(\widehat {BAC} = 90^\circ  + 30^\circ  = 120^\circ \); \(\widehat {ABC} = 90^\circ  - 60^\circ  = 30^\circ \); \(\widehat {ACB} = 180^\circ  - 120^\circ  - 30^\circ  = 30^\circ \).

Áp dụng định lí sin cho tam giác \(ABC\), có

\(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}} \Rightarrow BC = \frac{{AB\sin A}}{{\sin C}} = \frac{{70\sin 120^\circ }}{{\sin 30^\circ }} = 70\sqrt 3 \).

Xét \(\Delta AHC\) có \(CH = BC\sin 60^\circ  = 70\sqrt 3  \cdot \sin 60^\circ  = 105\).

Vậy ngọn núi cao 105 m.

Trả lời: 105.

Câu 3

a) Giá trị \(\sin \alpha  \cdot \cos \alpha  < 0\).
Đúng
Sai
b) Có \(\sin \alpha  = \frac{{2\sqrt 2 }}{3}\).
Đúng
Sai
c) Có \(\tan \alpha  = \frac{{\sqrt 2 }}{4}\).
Đúng
Sai
d) Giá trị biểu thức \(\frac{{6\sqrt 2 \sin \alpha  + 3\cos \alpha }}{{\sqrt 2 \tan \alpha  + 2\sqrt 2 \cot \alpha }} = \frac{9}{5}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP