Đứng ở vị trí A trên bờ biển, bạn Bình đo được góc nghiêng so với bờ biển tới một vị trí C trên đảo là \(45^\circ \). Sau đó di chuyển dọc bờ biển đến vị trí B cách A một khoảng 105 m và đo được góc nghiêng so với bờ biển tới vị trí C đã chọn là \(35^\circ \). Tính khoảng cách từ vị trí C trên đảo tới bờ biển theo đơn vị mét (làm tròn kết quả đến hàng phần mười).

Đứng ở vị trí A trên bờ biển, bạn Bình đo được góc nghiêng so với bờ biển tới một vị trí C trên đảo là \(45^\circ \). Sau đó di chuyển dọc bờ biển đến vị trí B cách A một khoảng 105 m và đo được góc nghiêng so với bờ biển tới vị trí C đã chọn là \(35^\circ \). Tính khoảng cách từ vị trí C trên đảo tới bờ biển theo đơn vị mét (làm tròn kết quả đến hàng phần mười).

Quảng cáo
Trả lời:
Đáp án:
Lời giải
Xét \(\Delta ACH\) có \(AH = \frac{{CH}}{{\tan 45^\circ }}\).
Xét \(\Delta BCH\) có \(BH = \frac{{CH}}{{\tan 35^\circ }}\).
Có \(AH + BH = 105\) nên \(\frac{{CH}}{{\tan 45^\circ }} + \frac{{CH}}{{\tan 35^\circ }} = 105\)\( \Leftrightarrow CH = 105:\left( {\frac{1}{{\tan 45^\circ }} + \frac{1}{{\tan 35^\circ }}} \right) \approx 43,2\)(m).
Trả lời: 43,2.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Xét \(\Delta ABC\) có \(\widehat {BAC} = 90^\circ + 30^\circ = 120^\circ \); \(\widehat {ABC} = 90^\circ - 60^\circ = 30^\circ \); \(\widehat {ACB} = 180^\circ - 120^\circ - 30^\circ = 30^\circ \).
Áp dụng định lí sin cho tam giác \(ABC\), có
\(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}} \Rightarrow BC = \frac{{AB\sin A}}{{\sin C}} = \frac{{70\sin 120^\circ }}{{\sin 30^\circ }} = 70\sqrt 3 \).
Xét \(\Delta AHC\) có \(CH = BC\sin 60^\circ = 70\sqrt 3 \cdot \sin 60^\circ = 105\).
Vậy ngọn núi cao 105 m.
Trả lời: 105.
Lời giải
Lời giải
a) Áp dụng định lí cô sin cho tam giác \(ABC\), có:
\(B{C^2} = A{B^2} + A{C^2} - 2AB \cdot AC \cdot \cos A\)\( = {8^2} + {5^2} - 2 \cdot 8 \cdot 5 \cdot \cos 60^\circ = 49\)\( \Rightarrow BC = 7\).
b) Nửa chu vi tam giác ABC là \(p = \frac{{5 + 8 + 7}}{2} = 10\).
Diện tích tam giác \(ABC\)là \(S = \sqrt {10\left( {10 - 8} \right)\left( {10 - 5} \right)\left( {10 - 7} \right)} = 10\sqrt 3 \).
Lại có \(S = \frac{1}{2}AH \cdot BC \Rightarrow AH = \frac{{2S}}{{BC}} = \frac{{20\sqrt 3 }}{7}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) Diện tích tam giác \(ABC\) bằng \(10\sqrt 3 \).
b) \(BC = 7\).
c) Bán kính đường tròn ngoại tiếp tam giác \(ABC\) bằng \(\sqrt {43} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) \(AB \approx 7,20\)(kết quả làm tròn đến hàng phần trăm).
b) Góc \(A\) là góc tù.
c) Bán kính đường tròn nội tiếp tam giác \(ABC\) xấp xỉ bằng 1,96 (kết quả làm tròn đến hàng phần trăm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
