Một ngôi tháp nghiêng về phía Tây một góc α so với phương ngang của mặt đất. Vào lúc 10 giờ sáng, khi góc nâng của tia sáng mặt trời so với mặt đất có số đo là \(60^\circ \) thì bóng của tháp trải trên mặt đất dài 37,5 m. Vào lúc 16 giờ chiếu, khi góc nâng của tia nắng mặt trời so với mặt đất có số đo là \(45^\circ \) thì bóng của tháp trải trên mặt đất là 51,9 m.
a) Tính chiều dài thân tháp nghiêng trên.
b) Tìm số đo góc α.
Một ngôi tháp nghiêng về phía Tây một góc α so với phương ngang của mặt đất. Vào lúc 10 giờ sáng, khi góc nâng của tia sáng mặt trời so với mặt đất có số đo là \(60^\circ \) thì bóng của tháp trải trên mặt đất dài 37,5 m. Vào lúc 16 giờ chiếu, khi góc nâng của tia nắng mặt trời so với mặt đất có số đo là \(45^\circ \) thì bóng của tháp trải trên mặt đất là 51,9 m.
a) Tính chiều dài thân tháp nghiêng trên.
b) Tìm số đo góc α.
Quảng cáo
Trả lời:
Lời giải
Ta có \(\widehat {BAC} = 180^\circ - 60^\circ - 45^\circ = 75^\circ \); \(BC = 37,5 + 51,9 = 89,4\).
Áp dụng định lí sin cho tam giác \(ABC\), ta có:
\(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}} \Rightarrow AB = \frac{{BC\sin C}}{{\sin A}} = \frac{{89,4 \cdot \sin 45^\circ }}{{\sin 75^\circ }} \approx 65,45\) (m).
Áp dụng định lí cô sin cho tam giác \(ABD\), ta có
\(A{D^2} = A{B^2} + B{D^2} - 2AB \cdot BD \cdot \cos \widehat {ABC} = {65,45^2} + {37,5^2} - 2 \cdot 65,45 \cdot 37,5 \cdot \cos 60^\circ \).
Suy ra \(AD \approx 56,88\) m.
Vậy chiều cao thân tháp là 56,88 m.
b) Xét \(\Delta AHB\), có \[AH = AB \cdot \sin B = 65,45 \cdot \sin 60^\circ \approx 56,68\] (m).
Khi đó \(\sin \alpha = \frac{{AH}}{{AD}} = 0,9965 \Rightarrow \alpha \approx 85^\circ 11'\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
\(A = \frac{{3{{\sin }^2}\alpha + 5}}{{{{\sin }^4}\alpha - {{\cos }^4}\alpha }}\)\( = \frac{{3\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} \cdot \frac{1}{{{{\cos }^2}\alpha }} + 5 \cdot \frac{1}{{{{\cos }^4}\alpha }}}}{{\frac{{{{\sin }^4}\alpha }}{{{{\cos }^4}\alpha }} - 1}}\)\( = \frac{{3{{\tan }^2}\alpha \cdot \left( {1 + {{\tan }^2}\alpha } \right) + 5 \cdot {{\left( {1 + {{\tan }^2}\alpha } \right)}^2}}}{{{{\tan }^4}\alpha - 1}}\)
\( = \frac{{3 \cdot {3^2} \cdot \left( {1 + {3^2}} \right) + 5 \cdot {{\left( {1 + {3^2}} \right)}^2}}}{{{3^4} - 1}} = \frac{{77}}{8}\).
Lời giải
Lời giải
Xét \(\Delta ABC\) có \(\widehat {BAC} = 90^\circ + 30^\circ = 120^\circ \); \(\widehat {ABC} = 90^\circ - 60^\circ = 30^\circ \); \(\widehat {ACB} = 180^\circ - 120^\circ - 30^\circ = 30^\circ \).
Áp dụng định lí sin cho tam giác \(ABC\), có
\(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}} \Rightarrow BC = \frac{{AB\sin A}}{{\sin C}} = \frac{{70\sin 120^\circ }}{{\sin 30^\circ }} = 70\sqrt 3 \).
Xét \(\Delta AHC\) có \(CH = BC\sin 60^\circ = 70\sqrt 3 \cdot \sin 60^\circ = 105\).
Vậy ngọn núi cao 105 m.
Trả lời: 105.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
