Một quả bóng được đá lên từ độ cao \(1,5\) mét so với mặt đất. Biết quỹ đạo của quả bóng là một đường parabol trong mặt phẳng toạ độ \(Oxy\) có phương trình \(h\left( t \right) = - 0,5{t^2} + 2,75t + 1,5\) trong đó \(t\) là thời gian (tính bằng giây) kể từ khi quả bóng được đá lên và \(h\) là độ cao (tính bằng mét) của quả bóng.
a) Quả bóng chạm mặt đất khi \(t = 5\) giây.
b) Quả bóng có độ cao lớn hơn \(1,5\) mét so với mặt đất trong thời gian là \(5\) giây.
c) Quả bóng đạt độ cao lớn nhất khi \(t = 2,75\) giây.
d) Quả bóng có độ cao lớn hơn \(1,5\) mét so với mặt đất trong khoảng thời gian \(0 < t < 6\).
Quảng cáo
Trả lời:
Ta có \(h\left( t \right) = 0 \Leftrightarrow - 0,5{t^2} + 2,75t + 1,5 = 0 \Leftrightarrow t = - 0,5;t = 6\).
\(h\left( t \right) = - 0,5{t^2} + 2,75t + 1,5 = - 0,5{\left( {t - \frac{{11}}{4}} \right)^2} + \frac{{169}}{{32}} \le \frac{{169}}{{32}}\) khi \(t = \frac{{11}}{4} = 2,75\)(giây).
Quả bóng có độ cao lớn hơn \(1,5\) mét so với mặt đất khi:
\(h\left( t \right) > 0 \Leftrightarrow - 0,5{t^2} + 2,75t + 1,5 > 0 \Leftrightarrow - 0,5 < t < 6\)
Mà \(t > 0\) nên suy ra \(0 < t < 6\).
a) Sai: Quả bóng chạm mặt đất khi \(t = 6\) giây.
b) Sai: Quả bóng có độ cao lớn hơn \(1,5\) mét so với mặt đất trong thời gian là \(6\) giây.
c) Đúng: Quả bóng đạt độ cao lớn nhất khi \(t = 2,75\) giây.
d) Đúng: Quả bóng có độ cao lớn hơn \(1,5\) mét so với mặt đất trong khoảng thời gian \(0 < t < 6\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \[\sqrt { - {x^2} + 5x - 4} = \sqrt { - 2{x^2} + 4x + 2} \Rightarrow - {x^2} + 5x - 4 = - 2{x^2} + 4x + 2\]
\[ \Leftrightarrow {x^2} + x - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\,\,\,\left( {tm} \right)\\x = - 3\,\,\left( {loai} \right)\end{array} \right.\]
Vậy phương trình có một nghiệm \[x = 2\].
Lời giải

Chọn hệ trục \(Oth\) như hình vẽ với gốc tọa độ \(O\) là vị trí trên mặt đất thẳng đứng với trực thăng.
Xét phương trình parabol \(\left( P \right):h\left( t \right) = a{t^2} + bt + c,\,\,a \ne 0\).
Theo giả thiết ta có \(S\left( {0;500} \right)\)và đi qua điểm\(A\left( {5;90} \right)\).
Đỉnh \(S\left( {0;500} \right)\) của \(\left( P \right)\) nằm trên trục tung nên \(\left( P \right):h\left( t \right) = a{t^2} + 500.\)
Mặt khác, \(A\left( {5;90} \right) \in \left( P \right) \to a = - 16,4\). Từ đây ta được phương trình \(\left( P \right):h\left( t \right) = - 16,4{t^2} + 500.\)
Khi nước chạm đất ta được: \(\left\{ {\begin{array}{*{20}{l}}{t > 0}\\{h\left( t \right) = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t > 0}\\{ - 16,4{t^2} + 500 = 0}\end{array}} \right. \Leftrightarrow t = \frac{{25\sqrt {82} }}{{41}}\).
Vậy \(\left\{ \begin{array}{l}b = 82\\c = 41\end{array} \right. \Rightarrow T = 82 + 41 = 123\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.