Câu hỏi:

22/12/2025 5 Lưu

Một cuộc họp có sự tham gia của \[6\] nhà Toán học trong đó có 4 nam và \[2\] nữ, \[7\] nhà Vật lý trong đó có \[3\] nam và \[4\] nữ và \[8\] nhà Hóa học trong đó có \[4\] nam và \[4\] nữ. Người ta muốn lập một ban thư kí gồm \[4\] nhà khoa học. Xác suất để ban thư kí được chọn phải có đủ cả \[3\] lĩnh vực và có cả nam lẫn nữ là \(\frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản và \(a,b \in \mathbb{Z}\). Tính giá trị biểu thức \(T = b - 2a\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \[n(\Omega ) = C_{21}^4 = 5985\]

Đặt \[A\] là biến cố chọn ra được \[4\] nhà khoa học có đầy đủ cả \[3\] lĩnh vực.

Khi đó:

Số cách chọn 2 nhà Toán học, 1 nhà Vật lý, 1 nhà Hóa học là: \[C_6^2.C_7^1.C_8^1 = 840\].

Số cách chọn 1 nhà Toán học, 2 nhà Vật lý, 1 nhà Hóa học là: \[C_6^1.C_7^2.C_8^1 = 1008\].

Số cách chọn 1 nhà Toán học, 1 nhà Vật lý, 2 nhà Hóa học là: \[C_6^1.C_7^1.C_8^2 = 1176\].

\[ \Rightarrow n\left( A \right) = 840 + 1008 + 1176 = 3024\]

Đặt \[B\] là biến cố chọn ra \[4\] nhà khoa học đủ cả \[3\] lĩnh vực mà trong đó

chỉ có nam hoặc chỉ có nữ.

Khi đó:

Số cách chọn chỉ có nam: \[C_4^2.C_3^1.C_4^1 + C_4^1.C_3^2.C_4^1 + C_4^1.C_3^1.C_4^2 = 192\].

Số cách chọn chỉ có nữ: \[C_2^2.C_4^1.C_4^1 + C_2^1.C_4^2.C_4^1 + C_2^1.C_4^1.C_4^2 = 112\].

\[ \Rightarrow n\left( B \right) = 192 + 112 = 304\].

Vậy số cách chọn ra được \[4\] nhà khoa học có đày đủ cả \[3\] lĩnh vực, trong

đó có cả nam lẫ nữ là: \[3024 - 304 = 2720\] hay \[n\left( A \right) = 2720\]

Vậy \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{2720}}{{5985}} = \frac{{544}}{{1197}} \Rightarrow \left\{ \begin{array}{l}a = 544\\b = 1197\end{array} \right. \Rightarrow T = 1197 - 2.544 = 109\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \[\sqrt { - {x^2} + 5x - 4}  = \sqrt { - 2{x^2} + 4x + 2}  \Rightarrow  - {x^2} + 5x - 4 =  - 2{x^2} + 4x + 2\]

\[ \Leftrightarrow {x^2} + x - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\,\,\,\left( {tm} \right)\\x =  - 3\,\,\left( {loai} \right)\end{array} \right.\]

Vậy phương trình có một nghiệm \[x = 2\].

Lời giải

Trong một đám cháy rừng, các máy bay trực thăng cứu hộ được điều động để phun nước dập tắt các đám cháy. (ảnh 1)

Chọn hệ trục \(Oth\) như hình vẽ với gốc tọa độ \(O\) là vị trí trên mặt đất thẳng đứng với trực thăng.

Xét phương trình parabol \(\left( P \right):h\left( t \right) = a{t^2} + bt + c,\,\,a \ne 0\).

Theo giả thiết ta có \(S\left( {0;500} \right)\)và đi qua điểm\(A\left( {5;90} \right)\).

Đỉnh \(S\left( {0;500} \right)\) của \(\left( P \right)\) nằm trên trục tung nên \(\left( P \right):h\left( t \right) = a{t^2} + 500.\)

Mặt khác, \(A\left( {5;90} \right) \in \left( P \right) \to a =  - 16,4\). Từ đây ta được phương trình \(\left( P \right):h\left( t \right) =  - 16,4{t^2} + 500.\)

Khi nước chạm đất ta được: \(\left\{ {\begin{array}{*{20}{l}}{t > 0}\\{h\left( t \right) = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t > 0}\\{ - 16,4{t^2} + 500 = 0}\end{array}} \right. \Leftrightarrow t = \frac{{25\sqrt {82} }}{{41}}\).

Vậy \(\left\{ \begin{array}{l}b = 82\\c = 41\end{array} \right. \Rightarrow T = 82 + 41 = 123\).

Câu 3

A. \(2187\)                       
B. \(210\).                      
C. \(35\).                       
D. \(5040\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP