Một tháp làm nguội của một nhà máy có mặt cắt là hình hyperbol có tiêu cự bằng \(2\sqrt {70} \,m\), độ dài trục ảo bằng\(2\sqrt {42} \,m\). Biết chiều cao của tháp là \(120\,m\) và khoảng cách từ nóc tháp đến tâm đối xứng của hypebol là \(\frac{2}{3}\) khoảng cách từ tâm đối xứng đến đáy. Khi đó bán kính nóc và bán kính đáy của tháp có độ dài lần lượt là \(2\sqrt a \,\left( {\rm{m}} \right)\) và \(2\sqrt b \left( {\rm{m}} \right)\). Tính giá trị biểu thức \(T = a + b\).

Quảng cáo
Trả lời:
Phương trình chính tắc của hypebol có dạng \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), với \(a < c\,,\,{b^2} = {c^2} - {a^2}\).
Ta có: \(2c = 2\sqrt {70} \Rightarrow c = \sqrt {70} ;\,2b = 2\sqrt {42} \Rightarrow b = \sqrt {42} ;\,a = \sqrt {{c^2} - {b^2}} = 2\sqrt 7 \)
Vậy phương trình chính tắc của hypebol là: \(\frac{{{x^2}}}{{28}} - \frac{{{y^2}}}{{42}} = 1\).
Gọi khoảng cách từ tâm đối xứng đến đáy tháp là z.
Suy ra khoảng cách từ tâm đối xứng đến nóc tháp là \(\frac{2}{3}z\).
Ta có: \(z + \frac{2}{3}z = 120 \Rightarrow z = 72\).
Thay \(y = 72\) vào phương trình \(\frac{{{x^2}}}{{28}} - \frac{{{y^2}}}{{42}} = 1\) ta tìm được \(x = \pm 2\sqrt {871} \).
Thay \(y = 48\) vào phương trình \(\frac{{{x^2}}}{{28}} - \frac{{{y^2}}}{{42}} = 1\) ta tìm được \(x = \pm 2\sqrt {391} \).
Vậy bán kính đường tròn nóc và bán kính đường tròn đáy của tháp lần lượt là: \(2\sqrt {391} \left( {\rm{m}} \right)\); \(2\sqrt {871} \,\left( {\rm{m}} \right)\)
Khi đó: \(\left\{ \begin{array}{l}a = 391\\b = 871\end{array} \right. \Rightarrow T = 391 + 871 = 1262\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai: Xếp tùy ý 9 bạn lên hàng ghé nằm ngang, ta có \(9! = 362880\) (cách).
b) Đúng: Xếp bạn An ngồi chính giữa, hoán vị 8 bạn còn lại ta có \(8! = 40320\) (cách).
c) Đúng: Xếp chỗ cho An và Bình ngồi cạnh nhau (thành nhóm \(X\)), số cách xếp trong \(X\) là \(2!\)
Số cách xếp nhóm \(X\) với 7 người còn lại (ta xem là hoán vị của 8 phần từ), số cách xếp là 8!.
Số cách xếp hàng thỏa mãn là \(2!8! = 80640\) (cách).
d) Đúng: Số cách xếp 9 bạn vào 9 chỗ là 9 ! cách. Vậy số cách xếp để An và Binh không ngồi cạnh nhau là: \(9! - 2!8! = 282240\) (cách).
Lời giải
a) Đúng: \(\left( P \right)\) đi qua hai điểm \(M\left( {1;0} \right)\) và \(N\left( { - 1;0} \right)\) nên ta được
\(\left\{ \begin{array}{l}a + b + 2 = 0\\a - b + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 2\\b = 0\end{array} \right. \Rightarrow a + 2024b = - 2\).
b) Sai: \(\left( P \right)\) có trục đối xứng là \(x = 1 \Rightarrow - \frac{b}{{2a}} = 1 \Rightarrow 2a + b = 0\;\left( 1 \right)\)
Mặt khác \(\left( P \right)\) đi qua điểm \(E\left( { - 1;5} \right)\) nên \(a - b + 2 = 5 \Leftrightarrow a - b = 3\;\left( 2 \right)\)
Từ \(\left( 1 \right),\;\left( 2 \right)\) suy ra \(a = 1,\;b = - 2\). Do đó \(2a + b = 0\).
c) Sai: \(\left( P \right)\) đi qua điểm \(F\left( { - 1;6} \right)\) nên \(a - b + 2 = 6 \Leftrightarrow a - b = 4 \Leftrightarrow a = b + 4\;\left( 3 \right)\)
Lại có \(\left( P \right)\) có tung độ đỉnh bằng \( - \frac{1}{4}\) nên
\( - \frac{\Delta }{{4a}} = - \frac{1}{4} \Rightarrow \frac{{{b^2} - 4ac}}{{4a}} = \frac{1}{4} \Rightarrow {b^2} - 8a = a \Rightarrow {b^2} - 9a = 0\;\left( 4 \right)\)
Thay \(\left( 3 \right)\) vào \(\left( 4 \right)\) được \({b^2} - 9\left( {b + 4} \right) = 0 \Leftrightarrow {b^2} - 9b - 36 = 0 \Leftrightarrow \left[ \begin{array}{l}b = - 3 \Rightarrow a = 1\\b = 12 \Rightarrow a = 16\end{array} \right.\)
Suy ra \(ab = - 3\) hoặc \(ab = 192\).
d) Đúng: Vì \(\left( P \right)\) có đỉnh là điểm \(S\left( { - 1; - \frac{3}{2}} \right)\) nên hoành độ đỉnh \(x = - 1 = - \frac{b}{{2a}} \Rightarrow 2a - b = 0\;\left( 5 \right)\)
Lại có \(\left( P \right)\) đi qua \(S\left( { - 1; - \frac{3}{2}} \right)\) nên \(a - b + 2 = - \frac{3}{2} \Leftrightarrow a - b = - \frac{7}{2}\;\left( 6 \right)\)
Từ \(\left( 5 \right),\;\left( 6 \right)\) ta được \(a = \frac{7}{2},\;b = 7 \Rightarrow 2a + b = 14\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.