Câu hỏi:

24/12/2025 46 Lưu

Tiếp tuyến của đồ thị hàm số \(y = \frac{{x + 1}}{{2x - 3}}\) tại điểm có hoành độ \({x_0} =  - 1\) có hệ số góc bằng

A. 5.  
B. \( - \frac{1}{5}\).
C. \( - 5\). 
D. \(\frac{1}{5}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Ta có \(y' = \frac{{\left( {2x - 3} \right) - 2\left( {x + 1} \right)}}{{{{\left( {2x - 3} \right)}^2}}}\)\( = \frac{{ - 5}}{{{{\left( {2x - 3} \right)}^2}}}\).

Hệ số góc của tiếp tuyến tại điểm có hoành độ \({x_0} =  - 1\)là:

\(y'\left( { - 1} \right) = \frac{{ - 5}}{{{{\left( {2.\left( { - 1} \right) - 3} \right)}^2}}} =  - \frac{1}{5}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\mathbb{R}\).  
B. \(\left( {0; + \infty } \right)\). 
C. \(\mathbb{R}\backslash \left\{ 0 \right\}\). 
D. \(\left[ {0; + \infty } \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Tập xác định của hàm số là \(\mathbb{R}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc (ABCD). Gọi M là hình chiếu của A trên SB. Khẳng định nào sau đây là đúng? (ảnh 1)

Vì \(ABCD\) là hình vuông nên \(BC \bot AB\) (1).

Mà \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC\) (2).

Từ (1) và (2), suy ra \(BC \bot \left( {SAB} \right) \Rightarrow BC \bot AM\)(3).

Vì \(M\) là hình chiếu của \(A\) trên \(SB\) nên \(AM \bot SB\) (4).

Từ (3) và (4), suy ra \(AM \bot \left( {SBC} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. .\(\frac{a}{{\sqrt 2 }}\).   
B. \(\frac{a}{2}\).
C. \(\frac{a}{{\sqrt 6 }}\).  
D. \(\frac{a}{{\sqrt 3 }}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(D = \left( { - \infty ; - 1} \right] \cup \left[ {3; + \infty } \right).\)  
B. \(D = \left[ { - 1;3} \right].\)
C. \(D = \left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right).\) 
D. \(D = \left( { - 1;3} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left[ { - 1;1} \right]\). 
B. \(\left( { - \infty ;1} \right]\).                 
C. \(\left[ { - \sqrt 7 ;\sqrt 7 } \right]\). 
D. \(\left[ {1; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP