Câu hỏi:

24/12/2025 60 Lưu

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có tất cả các cạnh bằng \(a\). Khoảng cách từ \(A\) đến mặt phẳng \(\left( {A'BC} \right)\) bằng

A. \(\frac{{a\sqrt {12} }}{7}\).  
B. \(\frac{{a\sqrt {21} }}{7}\). 
C. \(\frac{{a\sqrt 6 }}{4}\). 
D. \(\frac{{a\sqrt 3 }}{4}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a. Khoảng cách từ A đến mặt phẳng (A'BC) bằng (ảnh 1)

Gọi \(E\) là trung điểm của \(BC\).

Vì \(\Delta ABC\) đều nên \(AE \bot BC\) mà \(BC \bot AA'\) (do \(AA' \bot \left( {ABC} \right)\)).

Suy ra \(BC \bot \left( {A'AE} \right)\).

Hạ \(AH \bot A'E\) tại H (1).

Vì \(BC \bot \left( {A'AE} \right)\)\( \Rightarrow BC \bot AH\) (2).

Từ (1) và (2), suy ra \(AH \bot \left( {A'BC} \right)\).

Do đó \(d\left( {A,\left( {A'BC} \right)} \right) = AH\).

Vì \(\Delta ABC\) đều cạnh \(a\) nên \(AE = \frac{{a\sqrt 3 }}{2}\).

Xét \(\Delta A'AE\) vuông tại \(A\), ta có

\(\frac{1}{{A{H^2}}} = \frac{1}{{A{{A'}^2}}} + \frac{1}{{A{E^2}}}\)\( = \frac{1}{{{a^2}}} + \frac{4}{{3{a^2}}} = \frac{7}{{3{a^2}}}\)\( \Rightarrow AH = \frac{{a\sqrt {21} }}{7}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\mathbb{R}\).  
B. \(\left( {0; + \infty } \right)\). 
C. \(\mathbb{R}\backslash \left\{ 0 \right\}\). 
D. \(\left[ {0; + \infty } \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Tập xác định của hàm số là \(\mathbb{R}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Có tam giác \(ABC\) vuông cân tại \(B\) nên \(AB \bot BC\) (1).

Mà \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\)(2).

Từ (1) và (2), suy ra \(BC \bot \left( {SAB} \right)\)\( \Rightarrow BC \bot SB\) mà \(AB \bot BC\)

Nên \(\left[ {A,BC,S} \right] = \widehat {SBA}\).

Xét \(\Delta SAB\) vuông tại \(A,\)có \(\tan \widehat {SBA} = \frac{{SA}}{{AB}} = \frac{{a\sqrt 3 }}{a} = \sqrt 3 \)\( \Rightarrow \widehat {SBA} = 60^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. .\(\frac{a}{{\sqrt 2 }}\).   
B. \(\frac{a}{2}\).
C. \(\frac{a}{{\sqrt 6 }}\).  
D. \(\frac{a}{{\sqrt 3 }}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left[ { - 1;1} \right]\). 
B. \(\left( { - \infty ;1} \right]\).                 
C. \(\left[ { - \sqrt 7 ;\sqrt 7 } \right]\). 
D. \(\left[ {1; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(D = \left( { - \infty ; - 1} \right] \cup \left[ {3; + \infty } \right).\)  
B. \(D = \left[ { - 1;3} \right].\)
C. \(D = \left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right).\) 
D. \(D = \left( { - 1;3} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP