Câu hỏi:

25/12/2025 25 Lưu

Sau khi có kết quả của kỳ thi tốt nghiệp THPT thì xác suất để An đậu NV1 vào trường Đại học Y Dược TPHCM là \(97\% \) và Bình đậu NV1 vào trường Đại học Bách Khoa TPHCM là \(96\% \). Tính xác suất để ít nhất có một trong hai bạn đậu NV1.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi \(A\) là biến cố “An đậu NV1”; \(B\) là biến cố “Bình đậu NV1”.

Khi đó \(P\left( A \right) = 0,97;P\left( B \right) = 0,96\).

\(P\left( {\overline A \overline B } \right) = P\left( {\overline A } \right)P\left( {\overline B } \right) = \left( {1 - 0,97} \right)\left( {1 - 0,96} \right) = 0,03.0,04 = 0,0012\)

Xác suất cần tìm là: \(1 - P\left( {\overline A \overline B } \right) = 1 - 0,0012 = 0,9988\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Ta có \({a^2}{b^3} = 16\)

\( \Leftrightarrow {\log _2}{a^2}{b^3} = {\log _2}16\)

\( \Leftrightarrow {\log _2}{a^2} + {\log _2}{b^3} = 4\)

\( \Leftrightarrow 2{\log _2}a + 3{\log _2}b = 4\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Áp dụng công thức \({A_n} = {A_0}{\left( {1 + r} \right)^n}\) với \(n\) là số kỳ hạn, \({A_0}\) là số tiền ban đầu, \({A_n}\) là số tiền có được sau \(n\) kỳ hạn, \(r\) là lãi suất.

Suy ra \({A_9} = {A_0}{\left( {1 + r} \right)^9} \Rightarrow r = \sqrt[9]{{\frac{{{A_9}}}{{{A_0}}}}} - 1 = \sqrt[9]{{\frac{{61758000}}{{58000000}}}} - 1 \approx 0,7\% \).

Câu 3

A. \(y = {\log _2}x\).
B. \(y = {2^x}\). 
C. \(y = {\left( {\frac{1}{2}} \right)^x}\).  
D. \(y = {\log _{\frac{1}{2}}}x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP