Câu hỏi:

25/12/2025 6 Lưu

Biểu thức nào dưới đây là tam thức bậc hai?

A.  \(f\left( x \right) = 3 - 4x - {x^2}\);            

B. \(f\left( x \right) = {\left( {\frac{1}{x}} \right)^2} + \frac{1}{x} + 6\);                        

C. \(f\left( x \right) = {\left( {{x^2}} \right)^2} - 2{x^2} + 2\);           
D. \(f\left( x \right) = {x^3} - 3{x^2} + x + 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \(f\left( x \right) = 3 - 4x - {x^2}\) là một tam thức bậc hai.

\(f\left( x \right) = {\left( {\frac{1}{x}} \right)^2} + \frac{1}{x} + 6\) không là tam thức bậc hai vì chứa ẩn ở mẫu.

\(f\left( x \right) = {\left( {{x^2}} \right)^2} - 2{x^2} + 2\) không là tam thức bậc hai vì có bậc là 4.

\(f\left( x \right) = {x^3} - 3{x^2} + x + 1\) không là tam thức bậc hai vì có bậc là 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một chiếc thuyền đang neo đậu tại vị trí A cách bờ biển một khoảng cách AB = 300 m. Trên bờ biển có một cái kho ở vị trí C cách B một khoảng là 1 400 m (ảnh 2)

Đổi: 300 m = 0,3 km; 1 400 m = 1,4 km; 20 phút = \(\frac{1}{3}\) giờ.

Đặt \(BM = x\) (km, \(x > 0\)).

Áp dụng định lí Pythagore trong tam giác vuông \(ABM\), ta suy ra \(AM = \sqrt {{{0,3}^2} + {x^2}} \) (km).

Thời gian người đó chèo thuyền từ \(A\) đến \(M\) là \(\frac{{\sqrt {{{0,3}^2} + {x^2}} }}{3}\) (giờ).

Ta có: \(BM + MC = BC \Rightarrow MC = BC - BM = 1,4 - x\) (km).

Thời gian người đó đi bộ từ \(M\) đến \(C\) là \(\frac{{1,4 - x}}{6}\) (giờ).

Khi đó ta có: \(\frac{{\sqrt {{{0,3}^2} + {x^2}} }}{3} + \frac{{1,4 - x}}{6} = \frac{1}{3}\)\( \Leftrightarrow 2\sqrt {0,09 + {x^2}}  = x + 0,6\).

Giải phương trình trên ta suy ra được \(x = 0,4\) là giá trị thỏa mãn \(x > 0\).

Vậy \(BM = 0,4\) km = 400 m.

Câu 2

A. 5;                          
B. 6;                              
C. 7;                           
D. 8.

Lời giải

Đáp án đúng là: B

Xét tam thức \(f\left( x \right) = 2{x^2} - 3x - 15\) có hai nghiệm là \({x_1} = \frac{{3 - \sqrt {129} }}{4}\), \({x_2} = \frac{{3 + \sqrt {129} }}{4}\).

Mặt khác có hệ số \(a = 2 > 0\), do đó ta có bảng xét dấu sau:

\(x\)

\( - \infty \)                \(\frac{{3 - \sqrt {129} }}{4}\)              \(\frac{{3 + \sqrt {129} }}{4}\)                 \( + \infty \)

\(f\left( x \right)\)

           +             0            –           0           +

 Dựa vào bảng xét dấu, ta thấy \(f\left( x \right) = 2{x^2} - 3x - 15 \le 0\)\( \Leftrightarrow x \in \left[ {\frac{{3 - \sqrt {129} }}{4};\,\,\frac{{3 + \sqrt {129} }}{4}} \right]\).

Do đó, bất phương trình đã cho có 6 nghiệm nguyên là – 2; – 1; 0; 1; 2; 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Phương trình vô nghiệm;                            

B. Phương trình có một nghiệm;   

C. Tổng các nghiệm của phương trình là – 1;     
D. Phương trình có hai nghiệm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {10;\,2\,5} \right)\);                          
B. \(\left( { - 1;\,\,7} \right)\);         
C. \(\left( {2;\,\,5} \right)\);        
D. \(\left( {5;\,\,2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(m =  - \frac{9}{8}\);                                  
B. \(m = \frac{9}{8}\);         
C. \(m = \frac{1}{2}\);             
D. \(m =  - \frac{5}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(R = 9\);               
B. \(R = 2\);                   
C. \(R = 4\);               
D. \(R = 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP