Câu hỏi:

16/01/2026 125 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn \(\left( C \right):{\left( {x - 2} \right)^2} + {y^2} = \frac{4}{5}\) và hai đường thẳng \({\Delta _1}:x - y = 0,{\Delta _2}:x - 7y = 0\). Xác định tọa độ tâm \(K\) đường tròn \(\left( {C'} \right)\) tiếp xúc với các đường thẳng \({\Delta _1},\,{\Delta _2}\) và tâm \(K\) thuộc đường tròn \(\left( C \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn \(\left( C \right):{\left( {x - 2} \right)^2} + {y^2} = \frac{4}{5}\) và hai đường thẳng \({\Delta _1}:x - y = 0,{\Delta _2}:x - 7y = 0\) (ảnh 1)

Xét hệ phương trình \(\left\{ \begin{array}{l}x - y = 0\\x - 7y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = 0\end{array} \right.\).

Do đó, \({\Delta _1} \cap {\Delta _2} = O\left( {0;0} \right)\). Gọi \(A,\,\,B\) lần lượt là hai tiếp điểm của \(\left( {C'} \right)\) với \({\Delta _1},{\Delta _2}.\)

Ta có tam giác \(OAB\) cân tại \(O\) và \(K\) thuộc đường phân giác của \(\widehat {AOB}\).

Mặt khác, ta chứng minh được phương trình đường phân giác của \(\widehat {AOB}\) là:

\(\frac{{x - y}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} =  \pm \frac{{x - 7y}}{{\sqrt {{1^2} + {{\left( { - 7} \right)}^2}} }} \Leftrightarrow \left[ \begin{array}{l}2x + y = 0\\x - 2y = 0\end{array} \right.\) .

Vì \(K \in \left( C \right)\) nên tọa độ điểm \(K\) là nghiệm của các hệ phương trình

\(\left\{ \begin{array}{l}2x + y = 0\\{\left( {x - 2} \right)^2} + {y^2} = \frac{4}{5}\end{array} \right.\,\,\)  (Vô nghiệm)  và  \(\left\{ \begin{array}{l}x - 2y = 0\\{\left( {x - 2} \right)^2} + {y^2} = \frac{4}{5}\end{array} \right.\,\, \Leftrightarrow \left\{ \begin{array}{l}x = \frac{8}{5}\\y = \frac{4}{5}\end{array} \right.\).  

Vậy \(K\left( {\frac{8}{5};\,\frac{4}{5}} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\)(nghìn đồng) là số tiền tăng thêm khi bán ra một cốc trà sữa \(\left( {x \ge 0} \right)\).

Số cốc trà sữa bán được sau khi tăng giá thêm \(x\)(nghìn đồng) là: \(2\,200 - 100x\) (cốc).

Số tiền lãi thu được là:

\(\left( {30 + x - 22} \right)\left( {2\,\,200 - 100x} \right) = \left( {8 + x} \right)\left( {2\,200 - 100x} \right) =  - 100{x^2} + 1\,400x + 17600\) (nghìn đồng).

Để lợi nhuận thu được là lớn nhất thì phải tìm được \(x\) sao cho hàm số \(f\left( x \right) =  - 100{x^2} + 1400x + 17600\) lớn nhất.

Hàm số này là hàm số bậc hai có \(a =  - 100 < 0\) nên nó đạt giá trị lớn nhất tại đỉnh của đồ thị hàm số.

Hoành độ đỉnh của đồ thị hàm số \(f\left( x \right) =  - 100{x^2} + 1400x + 17600\) là \(x =  - \frac{b}{{2a}} =  - \frac{{1400}}{{2.\left( { - 100} \right)}} = 7\) (thỏa mãn \[x \ge 0\]).

Khi đó số tiền phải tăng lên để lợi nhuận lớn nhất là 7 nghìn đồng hay chính là bán ra một cốc trà sữa với giá 30 + 7 = 37 (nghìn đồng).

Vậy cửa hàng phải bán mỗi cốc trà sữa với giá 37 000 đồng để đạt lợi nhuận lớn nhất.

Câu 2

A. \(\left( {\frac{3}{2};\,\,\frac{3}{2}} \right)\);                                  
B. \(\left( {1;\,\,1} \right)\);                     
C. \(\left( {2;\,\,2} \right)\);                              
D. \(\left( { - \frac{3}{2};\,\, - \frac{3}{2}} \right)\).

Lời giải

Đáp án đúng là: A

Đường thẳng \(\Delta :x - y = 0\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}}  = \left( {1;\, - 1} \right)\) nên nó có một vectơ chỉ phương là \(\overrightarrow {{u_1}}  = \left( {1;\,\,1} \right)\).

Gọi \(H\) là hình chiếu vuông góc của \(M\left( {1;\,\,2} \right)\) lên đường thẳng \(\Delta \), vì \(H \in \Delta \) nên \(H\left( {t;\,\,t} \right)\).

Vì \(MH \bot \Delta  \Rightarrow \overrightarrow {MH}  \bot \overrightarrow u  \Rightarrow \overrightarrow {MH} .\overrightarrow u  = 0 \Leftrightarrow t - 1 + t - 2 = 0 \Leftrightarrow t = \frac{3}{2}\).

Vậy \(H\left( {\frac{3}{2};\,\frac{3}{2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\mathbb{R}\backslash \left\{ { - 1;\,\,6} \right\}\);                              

B. \(\left( { - \infty ;\,\,5} \right)\); 

C. \(\left( { - \infty ;\,\,5} \right]\backslash \left\{ { - 1} \right\}\);                
D. \(\left( {\infty ;\,\,5} \right)\backslash \left\{ { - 1;\,\,6} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Tổng các bình phương các nghiệm của phương trình \[\sqrt { - {x^2} + 2x + 3}  = \sqrt {{x^2} - 4x + 3} \] bằng

A. 0;                          
B. 4;                              
C. Không tồn tại;        
D. 9.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho parabol \(\left( P \right):y = {x^2} + bx + 1\) đi qua điểm \(A\left( { - 1;\,\,3} \right)\). Khi đó

A. \(b =  - 1\);             
B. \(b = 1\);                    
C. \(b = 3\);                
D. \(b = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP