(1,5 điểm) Cho biểu thức \(A = \frac{{\sqrt x }}{{\sqrt x - 3}};\,B = \frac{7}{{\sqrt x + 1}} - \frac{{12}}{{\left( {\sqrt x + 1} \right)\left( {3 - \sqrt x } \right)}}\) với \(x \ge 0;x \ne 9\)
a) Tính giá trị của \(A\,\)khi \(x = \frac{9}{4}\).
b) Rút gọn \(M = A - B\).
c) Tìm các giá trị của \(x\) sao cho \({M^2} < \frac{{25}}{4}\).
(1,5 điểm) Cho biểu thức \(A = \frac{{\sqrt x }}{{\sqrt x - 3}};\,B = \frac{7}{{\sqrt x + 1}} - \frac{{12}}{{\left( {\sqrt x + 1} \right)\left( {3 - \sqrt x } \right)}}\) với \(x \ge 0;x \ne 9\)
a) Tính giá trị của \(A\,\)khi \(x = \frac{9}{4}\).
b) Rút gọn \(M = A - B\).
c) Tìm các giá trị của \(x\) sao cho \({M^2} < \frac{{25}}{4}\).
Câu hỏi trong đề: Đề luyện thi Toán vào lớp 10 Hà Nội 2026 có đáp án - Đề 27 !!
Quảng cáo
Trả lời:
a) Tính giá trị của \(A\,\)khi \(x = \frac{9}{4}\).
Thay \(x = \frac{9}{4}\) (tmđk) vào \(A\,\) ta được: \(A = \frac{{\sqrt {\frac{9}{4}} }}{{\sqrt {\frac{9}{4}} - 3}} = \frac{{\frac{3}{2}}}{{\frac{3}{2} - 3}} = \frac{{\frac{3}{2}}}{{\frac{{ - 3}}{2}}} = - 1\).
Vậy khi \(x = \frac{9}{4}\) thì \(A = - 1\).
b) Rút gọn \(M = A - B\).
\(M = \frac{{\sqrt x }}{{\sqrt x - 3}} - \left[ {\frac{7}{{\sqrt x + 1}} - \frac{{12}}{{\left( {\sqrt x + 1} \right)\left( {3 - \sqrt x } \right)}}} \right]\)
\(M = \frac{{\sqrt x }}{{\sqrt x - 3}} - \frac{7}{{\sqrt x + 1}} - \frac{{12}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 3} \right)}}\) \( = \frac{{\sqrt x \left( {\sqrt x + 1} \right) - 7\left( {\sqrt x - 3} \right) - 12}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 3} \right)}}\)
\( = \frac{{x + \sqrt x - 7\sqrt x + 21 - 12}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 3} \right)}}\) \( = \frac{{x - 6\sqrt x + 9}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 3} \right)}}\) \( = \frac{{{{\left( {\sqrt x - 3} \right)}^2}}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 3} \right)}}\) \( = \frac{{\sqrt x - 3}}{{\sqrt x + 1}}\)
c) Tìm các giá trị của \(x\) sao cho \({M^2} < \frac{{25}}{4}\).
\(\begin{array}{l}{M^2} < \frac{{25}}{4}\\{\left( {\frac{{\sqrt x - 3}}{{\sqrt x + 1}}} \right)^2} < \frac{{25}}{4}\end{array}\)
\({\left( {\frac{{\sqrt x - 3}}{{\sqrt x + 1}}} \right)^2} < {\left( {\frac{5}{2}} \right)^2}\)
\(\left( {\frac{{\sqrt x - 3}}{{\sqrt x + 1}} - \frac{5}{2}} \right)\left( {\frac{{\sqrt x - 3}}{{\sqrt x + 1}} + \frac{5}{2}} \right) < 0\)
\(\left( {7\sqrt x - 1} \right)\left( { - 3\sqrt x - 11} \right) < 0\)
\(7\sqrt x - 1 > 0\)
\(x > \frac{1}{{49}}\), điều kiện \(x \ge 0;x \ne 9\)
Vậy với \[\frac{1}{{49}} < x;\,\,x \ne 9\] thì \({M^2} < \frac{{25}}{4}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đổi 7 giờ 12 phút = \(\frac{{36}}{5}\)giờ
Gọi thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là x, y (giờ). Điều kiện \(x,y > 0\)
Trong 1 giờ, vòi 1 chảy được : \[\frac{1}{x}\] (bể)
Trong 1 giờ, vòi 2 chảy được: \[\frac{1}{y}\] (bể)
Trong 1 giờ, car2 vòi chảy được : \[\frac{5}{{36}}\] (bể)
Ta có phương trình: \(\frac{1}{x} + \frac{1}{y} = \frac{5}{{36}}\) \(\left( 1 \right)\)
Vì mở vòi 1 chảy trong 5 giờ rồi khóa lại thì vòi 1 chảy được: \(\frac{5}{x}\)(bể),
và mở tiếp vòi 2 chảy trong 6 giờ thì vòi 2 chảy được: \(\frac{6}{y}\)(bể)
Vậy cả hai vòi chảy được \(\frac{3}{4}\)bể, ta có phương trình: \(\frac{5}{x} + \frac{6}{y} = \frac{3}{4}\) \(\left( 2 \right)\)
Từ \(\left( 1 \right)\)và \(\left( 2 \right)\)ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{5}{{36}}\\\frac{5}{x} + \frac{6}{y} = \frac{3}{4}\end{array} \right.\,\,\,\,\,\,\left\{ \begin{array}{l}\frac{5}{x} + \frac{5}{y} = \frac{{25}}{{36}}\\\frac{5}{x} + \frac{6}{y} = \frac{3}{4}\end{array} \right.\,\,\,\,\,\,\,\left\{ \begin{array}{l}\frac{1}{y} = \frac{1}{{18}}\\\frac{1}{x} = \frac{1}{{12}}\end{array} \right.\,\,\,\,\,\left\{ \begin{array}{l}x = 12(tm)\\y = 18(tm)\end{array} \right.\)
Vậy vòi 1 chảy một mình đầy bể hết 12 giờ;
Vòi 2 chảy một mình đầy bể hết 18 giờ
Lời giải

Ta có \[AE = GB = x\,\,(0 < x < 15) \Rightarrow EG = 30 - 2x\].
Kẻ đường cao \(AK\) của \(\Delta AGE\).
Vì \(\Delta AGE\) cân tại \[A\] nên \(KE = \frac{{EG}}{2} = \frac{{30 - 2x}}{2} = 15 - x\) (cm).
\(\Delta AKE\) vuông tại \(K\)\( \Rightarrow AE > KE \Rightarrow x > \frac{{15}}{2}\).
Áp dụng định lý Py-ta-go vào tam giác vuông \[AKE\] ta có
\[A{K^2} + K{E^2} = A{E^2}\]
\[ \Leftrightarrow A{K^2} = A{E^2} - K{E^2}\]
\[ \Leftrightarrow AK = \sqrt {A{E^2} - K{E^2}} \]
\[ \Leftrightarrow AK = \sqrt {{x^2} - {{\left( {15 - x} \right)}^2}} \]
\[ \Leftrightarrow AK = \sqrt {30x - 225} \].
Diện tích đáy \[AGE\] là
\[{S_{AGE}} = \frac{1}{2}AK.GE = \frac{1}{2}\sqrt {30x - 225} .\left( {30 - 2x} \right) = \sqrt {30x - 225} .\left( {15 - x} \right)\,\,\left( {c{m^2}} \right)\].
Thể tích lăng trụ là \[V = 30.\sqrt {30x - 225} .(15 - x)\,\,\left( {c{m^3}} \right)\].
\[V = 30.\sqrt {30x - 225} .(15 - x) = 30.\sqrt {15.\left( {2x - 15} \right)} .\sqrt {15 - x} .\sqrt {15 - x} \]
\[ = 10.\sqrt {15} .3.\sqrt {2x - 15} .\sqrt {15 - x} .\sqrt {15 - x} \].
Áp dụng bất đẳng thức Cô-si cho ba số dương \(2x - 15\), \(15 - x\), \(15 - x\) ta được
\[3.\sqrt[3]{{\left( {2x - 15} \right)\left( {15 - x} \right)\left( {15 - x} \right)}} \le \left( {2x - 15} \right) + \left( {15 - x} \right) + \left( {15 - x} \right)\]
\[ \Leftrightarrow \sqrt[3]{{\left( {2x - 15} \right)\left( {15 - x} \right)\left( {15 - x} \right)}} \le 5\]
\[ \Leftrightarrow \left( {2x - 15} \right)\left( {15 - x} \right)\left( {15 - x} \right) \le {5^3}\]
\[ \Leftrightarrow \sqrt {\left( {2x - 15} \right)\left( {15 - x} \right)\left( {15 - x} \right)} \le \sqrt {{5^3}} = 5\sqrt 5 \]
\[ \Rightarrow V \le 10.\sqrt {15} .3.5\sqrt 5 \Rightarrow V \le 750\sqrt 3 \].
Dấu xảy ra khi và chỉ khi \(2x - 15 = 15 - x \Leftrightarrow x = 10\).
Vậy \(x = 10\) thì thể tích lăng trụ lớn nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


