Câu hỏi:

01/01/2026 6 Lưu

Cho hàm số \(f\left( x \right) =  - {x^2} + 4x + 5\). Kết luận nào sau đây đúng?

A. \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 1;\,5} \right)\);         
B. \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 1;\, + \infty } \right)\);
C. \(f\left( x \right) > 0\) với mọi \(x \in \left( { - \infty ;\, - 1} \right) \cup \left( {5; + \infty } \right)\);
D. \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ;\,5} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Dễ thấy \(f\left( x \right) =  - {x^2} + 4x + 5\) có \(\Delta  = 36 > 0,\,a =  - 1 < 0\)và có hai nghiệm phân biệt \({x_1} =  - 1;\,{x_2} = 5\). Do đó ta có bảng xét dấu \(f\left( x \right)\):

Cho hàm số f(x) =  - x^2 + 4x + 5. Kết luận nào sau đây đúng? (ảnh 1)

Suy ra \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 1;5} \right)\) và \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {5; + \infty } \right)\).

Vậy đáp án đúng là A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cho tam giác ABC biết H (3;2), (5/3;8/3) lần lượt là trực tâm và trọng tâm của tam giác, đường thẳng BC có phương trình x + 2y - 2 = 0. Tìm phương trình đường tròn ngoại tiếp tam giác ABC? (ảnh 1)

Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).

\( \Rightarrow \overrightarrow {HI}  = \frac{3}{2}\overrightarrow {HG}  \Rightarrow \left\{ \begin{array}{l}{x_I} - 3 = \frac{3}{2}\left( {\frac{5}{3} - 3} \right)\\{y_I} - 2 = \frac{3}{2}\left( {\frac{8}{3} - 2} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_I} = 1\\{y_I} = 3\end{array} \right. \Rightarrow I\left( {1;3} \right)\).

Gọi \(M\) là trung điểm của \(BC\) \( \Rightarrow IM \bot BC\) \( \Rightarrow IM:2x - y + c = 0\).

Vì \(I \in IM \Rightarrow 2.1 - 3 + c = 0 \Rightarrow c = 1\)

\( \Rightarrow IM:2x - y + 1 = 0\)

\(M = IM \cap BC \Rightarrow \left\{ \begin{array}{l}2x - y =  - 1\\x + 2y = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 0\\y = 1\end{array} \right. \Rightarrow M\left( {0;1} \right)\).

Lại có: \(\overrightarrow {MA}  = 3\overrightarrow {MG}  \Rightarrow \left\{ \begin{array}{l}{x_A} = 3.\frac{5}{3}\\{y_A} - 1 = 3.\left( {\frac{8}{3} - 1} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} = 5\\{y_A} = 6\end{array} \right. \Rightarrow A\left( {5;6} \right)\)  .

Suy ra: đường tròn ngoại tiếp tam giác \(ABC\) là đường tròn tâm \(I\left( {1;3} \right)\) bán kính \(R = IA = 5\).

Vậy phương trình đường tròn ngoại tiếp tam giác \(ABC\) là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 25\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có: \[{\left( {a + b} \right)^4} = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4a{b^3} + {b^4}\].

Do vậy có tất cả \[5\] số hạng.

Câu 3

A. \({d_1}\) và \({d_2}\) cắt nhau và không vuông góc với nhau;         
B. \({d_1}\) và \({d_2}\) song song với nhau;
C. \({d_1}\) và \({d_2}\) trùng nhau;
D. \({d_1}\) và \({d_2}\) vuông góc với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({x^2} + 2{y^2} - 4x - 8y + 1 = 0\);   
B. \({x^2} + {y^2} - 4x + 6y - 12 = 0\);
C. \({x^2} + {y^2} - 2x - 8y + 20 = 0\);  
D. \(4{x^2} + {y^2} - 10x - 6y - 2 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[I\left( { - 2; - 3} \right)\];   
B. \[I\left( {2;3} \right)\];    
C. \[I\left( {4;6} \right)\]; 
D. \[I\left( { - 4; - 6} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( E \right)\) có tỉ số \[\frac{c}{a} = \frac{{\sqrt 5 }}{3}\];   
B. \(\left( E \right)\) có trục lớn bằng \(6\);
. \(\left( E \right)\) có trục nhỏ bằng \(4\); 
D. \(\left( E \right)\) có tiêu cự \(\sqrt 5 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP