Ông Hoàng có một mảnh vườn hình Elip có chiều dài trục lớn và trục nhỏ lần lượt là \(60m\) và \(30m\) và diện tích \({S_{\left( E \right)}} = 450\pi \,\,\left( {{m^2}} \right)\). Ông chia mảnh vườn ra làm hai nửa bằng một đường tròn tiếp xúc trong với Elip để làm mục đích sử dụng khác nhau (xem hình vẽ). Nửa bên trong đường tròn ông trồng cây lâu năm, nửa bên ngoài đường tròn ông trồng hoa màu. Tỉ số diện tích \(T\) giữa phần trồng cây lâu năm so với diện tích trồng hoa màu là

Ông Hoàng có một mảnh vườn hình Elip có chiều dài trục lớn và trục nhỏ lần lượt là \(60m\) và \(30m\) và diện tích \({S_{\left( E \right)}} = 450\pi \,\,\left( {{m^2}} \right)\). Ông chia mảnh vườn ra làm hai nửa bằng một đường tròn tiếp xúc trong với Elip để làm mục đích sử dụng khác nhau (xem hình vẽ). Nửa bên trong đường tròn ông trồng cây lâu năm, nửa bên ngoài đường tròn ông trồng hoa màu. Tỉ số diện tích \(T\) giữa phần trồng cây lâu năm so với diện tích trồng hoa màu là

Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Xét hệ trục \[Oxy\] như hình vẽ
Khi đó Elip có độ dài nửa trục lớn \(a = 30\), nửa độ dài trục bé \(b = 15\) nên đường tròn có bán kính \(R = 15\).
Diện tích đường tròn \({S_{\left( C \right)}} = \pi {R^2} = \pi {15^2} = 225\pi \).
Diện tích nửa bên ngoài trồng hoa màu là
\(S = {S_{\left( E \right)}} - {S_{\left( C \right)}} = 450\pi - 225\pi = 225\pi \)
Vậy tỉ số \(T = \frac{{225\pi }}{{225\pi }} = 1\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).
\( \Rightarrow \overrightarrow {HI} = \frac{3}{2}\overrightarrow {HG} \Rightarrow \left\{ \begin{array}{l}{x_I} - 3 = \frac{3}{2}\left( {\frac{5}{3} - 3} \right)\\{y_I} - 2 = \frac{3}{2}\left( {\frac{8}{3} - 2} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_I} = 1\\{y_I} = 3\end{array} \right. \Rightarrow I\left( {1;3} \right)\).
Gọi \(M\) là trung điểm của \(BC\) \( \Rightarrow IM \bot BC\) \( \Rightarrow IM:2x - y + c = 0\).
Vì \(I \in IM \Rightarrow 2.1 - 3 + c = 0 \Rightarrow c = 1\)
\( \Rightarrow IM:2x - y + 1 = 0\)
\(M = IM \cap BC \Rightarrow \left\{ \begin{array}{l}2x - y = - 1\\x + 2y = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 0\\y = 1\end{array} \right. \Rightarrow M\left( {0;1} \right)\).
Lại có: \(\overrightarrow {MA} = 3\overrightarrow {MG} \Rightarrow \left\{ \begin{array}{l}{x_A} = 3.\frac{5}{3}\\{y_A} - 1 = 3.\left( {\frac{8}{3} - 1} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} = 5\\{y_A} = 6\end{array} \right. \Rightarrow A\left( {5;6} \right)\) .
Suy ra: đường tròn ngoại tiếp tam giác \(ABC\) là đường tròn tâm \(I\left( {1;3} \right)\) bán kính \(R = IA = 5\).
Vậy phương trình đường tròn ngoại tiếp tam giác \(ABC\) là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 25\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Dễ thấy \(f\left( x \right) = - {x^2} + 4x + 5\) có \(\Delta = 36 > 0,\,a = - 1 < 0\)và có hai nghiệm phân biệt \({x_1} = - 1;\,{x_2} = 5\). Do đó ta có bảng xét dấu \(f\left( x \right)\):
Suy ra \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 1;5} \right)\) và \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {5; + \infty } \right)\).
Vậy đáp án đúng là A.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Cho đường thẳng \[{d_1}:2x + 3y + 15 = 0\] và \[{d_2}:x - 2y - 3 = 0\]. Khẳng định nào sau đây đúng?
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
