Câu hỏi:

01/01/2026 6 Lưu

Trên bàn có \[8\] cây bút chì khác nhau, \[6\] cây bút bi khác nhau và \[10\] cuốn tập khác nhau. Một học sinh muốn chọn một đồ vật duy nhất hoặc một cây bút chì hoặc một cây bút bi hoặc một cuốn tập thì số cách chọn khác nhau là:

A. \[480\];  
B. \[24\];
C. \[48\];   
D. \[60\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Việc chọn một đồ vật duy nhất được chia thành \(3\) phương án:

Phương án 1: Chọn một cây bút chì thì sẽ có \[8\] cách.

Phương án 2: Chọn một cây bút bi thì sẽ có \[6\] cách.

Phương án 3: Chọn một cuốn tập thì sẽ có \[10\] cách.

Theo quy tắc cộng, ta có \[8 + 6 + 10 = 24\]cách chọn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cho tam giác ABC biết H (3;2), (5/3;8/3) lần lượt là trực tâm và trọng tâm của tam giác, đường thẳng BC có phương trình x + 2y - 2 = 0. Tìm phương trình đường tròn ngoại tiếp tam giác ABC? (ảnh 1)

Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).

\( \Rightarrow \overrightarrow {HI}  = \frac{3}{2}\overrightarrow {HG}  \Rightarrow \left\{ \begin{array}{l}{x_I} - 3 = \frac{3}{2}\left( {\frac{5}{3} - 3} \right)\\{y_I} - 2 = \frac{3}{2}\left( {\frac{8}{3} - 2} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_I} = 1\\{y_I} = 3\end{array} \right. \Rightarrow I\left( {1;3} \right)\).

Gọi \(M\) là trung điểm của \(BC\) \( \Rightarrow IM \bot BC\) \( \Rightarrow IM:2x - y + c = 0\).

Vì \(I \in IM \Rightarrow 2.1 - 3 + c = 0 \Rightarrow c = 1\)

\( \Rightarrow IM:2x - y + 1 = 0\)

\(M = IM \cap BC \Rightarrow \left\{ \begin{array}{l}2x - y =  - 1\\x + 2y = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 0\\y = 1\end{array} \right. \Rightarrow M\left( {0;1} \right)\).

Lại có: \(\overrightarrow {MA}  = 3\overrightarrow {MG}  \Rightarrow \left\{ \begin{array}{l}{x_A} = 3.\frac{5}{3}\\{y_A} - 1 = 3.\left( {\frac{8}{3} - 1} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} = 5\\{y_A} = 6\end{array} \right. \Rightarrow A\left( {5;6} \right)\)  .

Suy ra: đường tròn ngoại tiếp tam giác \(ABC\) là đường tròn tâm \(I\left( {1;3} \right)\) bán kính \(R = IA = 5\).

Vậy phương trình đường tròn ngoại tiếp tam giác \(ABC\) là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 25\).

Câu 2

A. \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 1;\,5} \right)\);         
B. \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 1;\, + \infty } \right)\);
C. \(f\left( x \right) > 0\) với mọi \(x \in \left( { - \infty ;\, - 1} \right) \cup \left( {5; + \infty } \right)\);
D. \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ;\,5} \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Dễ thấy \(f\left( x \right) =  - {x^2} + 4x + 5\) có \(\Delta  = 36 > 0,\,a =  - 1 < 0\)và có hai nghiệm phân biệt \({x_1} =  - 1;\,{x_2} = 5\). Do đó ta có bảng xét dấu \(f\left( x \right)\):

Cho hàm số f(x) =  - x^2 + 4x + 5. Kết luận nào sau đây đúng? (ảnh 1)

Suy ra \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 1;5} \right)\) và \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {5; + \infty } \right)\).

Vậy đáp án đúng là A.

Câu 3

A. \({x^2} + 2{y^2} - 4x - 8y + 1 = 0\);   
B. \({x^2} + {y^2} - 4x + 6y - 12 = 0\);
C. \({x^2} + {y^2} - 2x - 8y + 20 = 0\);  
D. \(4{x^2} + {y^2} - 10x - 6y - 2 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(y = {x^2} - 4x - 1\);           
B. \(y = {x^2} - 4x + 3\);
C. \(y =  - {x^2} + 4x - 1\);  
D. \(y =  - {x^2} + 4x + 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({d_1}\) và \({d_2}\) cắt nhau và không vuông góc với nhau;         
B. \({d_1}\) và \({d_2}\) song song với nhau;
C. \({d_1}\) và \({d_2}\) trùng nhau;
D. \({d_1}\) và \({d_2}\) vuông góc với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[I\left( { - 2; - 3} \right)\];   
B. \[I\left( {2;3} \right)\];    
C. \[I\left( {4;6} \right)\]; 
D. \[I\left( { - 4; - 6} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP